To improve the accuracy and robustness of rolling bearing fault diagnosis under complex conditions, a novel method based on multi-view feature fusion is proposed. Firstly, multi-view features from perspectives of the ...To improve the accuracy and robustness of rolling bearing fault diagnosis under complex conditions, a novel method based on multi-view feature fusion is proposed. Firstly, multi-view features from perspectives of the time domain, frequency domain and time-frequency domain are extracted through the Fourier transform, Hilbert transform and empirical mode decomposition (EMD).Then, the random forest model (RF) is applied to select features which are highly correlated with the bearing operating state. Subsequently, the selected features are fused via the autoencoder (AE) to further reduce the redundancy. Finally, the effectiveness of the fused features is evaluated by the support vector machine (SVM). The experimental results indicate that the proposed method based on the multi-view feature fusion can effectively reflect the difference in the state of the rolling bearing, and improve the accuracy of fault diagnosis.展开更多
Hashing technology has the advantages of reducing data storage and improving the efficiency of the learning system,making it more and more widely used in image retrieval.Multi-view data describes image information mor...Hashing technology has the advantages of reducing data storage and improving the efficiency of the learning system,making it more and more widely used in image retrieval.Multi-view data describes image information more comprehensively than traditional methods using a single-view.How to use hashing to combine multi-view data for image retrieval is still a challenge.In this paper,a multi-view fusion hashing method based on RKCCA(Random Kernel Canonical Correlation Analysis)is proposed.In order to describe image content more accurately,we use deep learning dense convolutional network feature DenseNet to construct multi-view by combining GIST feature or BoW_SIFT(Bag-of-Words model+SIFT feature)feature.This algorithm uses RKCCA method to fuse multi-view features to construct association features and apply them to image retrieval.The algorithm generates binary hash code with minimal distortion error by designing quantization regularization terms.A large number of experiments on benchmark datasets show that this method is superior to other multi-view hashing methods.展开更多
Deep multi-view subspace clustering (DMVSC) based on self-expression has attracted increasing attention dueto its outstanding performance and nonlinear application. However, most existing methods neglect that viewpriv...Deep multi-view subspace clustering (DMVSC) based on self-expression has attracted increasing attention dueto its outstanding performance and nonlinear application. However, most existing methods neglect that viewprivatemeaningless information or noise may interfere with the learning of self-expression, which may lead to thedegeneration of clustering performance. In this paper, we propose a novel framework of Contrastive Consistencyand Attentive Complementarity (CCAC) for DMVsSC. CCAC aligns all the self-expressions of multiple viewsand fuses them based on their discrimination, so that it can effectively explore consistent and complementaryinformation for achieving precise clustering. Specifically, the view-specific self-expression is learned by a selfexpressionlayer embedded into the auto-encoder network for each view. To guarantee consistency across views andreduce the effect of view-private information or noise, we align all the view-specific self-expressions by contrastivelearning. The aligned self-expressions are assigned adaptive weights by channel attention mechanism according totheir discrimination. Then they are fused by convolution kernel to obtain consensus self-expression withmaximumcomplementarity ofmultiple views. Extensive experimental results on four benchmark datasets and one large-scaledataset of the CCAC method outperformother state-of-the-artmethods, demonstrating its clustering effectiveness.展开更多
Knowledge graphs(KGs)have been widely accepted as powerful tools for modeling the complex relationships between concepts and developing knowledge-based services.In recent years,researchers in the field of power system...Knowledge graphs(KGs)have been widely accepted as powerful tools for modeling the complex relationships between concepts and developing knowledge-based services.In recent years,researchers in the field of power systems have explored KGs to develop intelligent dispatching systems for increasingly large power grids.With multiple power grid dispatching knowledge graphs(PDKGs)constructed by different agencies,the knowledge fusion of different PDKGs is useful for providing more accurate decision supports.To achieve this,entity alignment that aims at connecting different KGs by identifying equivalent entities is a critical step.Existing entity alignment methods cannot integrate useful structural,attribute,and relational information while calculating entities’similarities and are prone to making many-to-one alignments,thus can hardly achieve the best performance.To address these issues,this paper proposes a collective entity alignment model that integrates three kinds of available information and makes collective counterpart assignments.This model proposes a novel knowledge graph attention network(KGAT)to learn the embeddings of entities and relations explicitly and calculates entities’similarities by adaptively incorporating the structural,attribute,and relational similarities.Then,we formulate the counterpart assignment task as an integer programming(IP)problem to obtain one-to-one alignments.We not only conduct experiments on a pair of PDKGs but also evaluate o ur model on three commonly used cross-lingual KGs.Experimental comparisons indicate that our model outperforms other methods and provides an effective tool for the knowledge fusion of PDKGs.展开更多
The recommendation algorithm based on collaborative filtering is currently the most successful recommendation method. It recommends items to theuser based on the known historical interaction data of the target user. ...The recommendation algorithm based on collaborative filtering is currently the most successful recommendation method. It recommends items to theuser based on the known historical interaction data of the target user. Furthermore,the combination of the recommended algorithm based on collaborative filtrationand other auxiliary knowledge base is an effective way to improve the performance of the recommended system, of which the Co-Factorization Model(CoFM) is one representative research. CoFM, a fusion recommendation modelcombining the collaborative filtering model FM and the graph embeddingmodel TransE, introduces the information of many entities and their relationsin the knowledge graph into the recommendation system as effective auxiliaryinformation. It can effectively improve the accuracy of recommendations andalleviate the problem of sparse user historical interaction data. Unfortunately,the graph-embedded model TransE used in the CoFM model cannot solve the1-N, N-1, and N-N problems well. To tackle this problem, a novel fusion recommendation model Joint Factorization Machines and TransH Model (JFMH) isproposed, which improves CoFM by replacing the TransE model with TransHmodel. A large number of experiments on two widely used benchmark data setsshow that compared with CoFM, JFMH has improved performance in terms ofitem recommendation and knowledge graph completion, and is more competitivethan multiple baseline methods.展开更多
异构信息网络(Heterogeneous Information Network, HIN)凭借其丰富的语义信息和结构信息被广泛应用于推荐系统中,虽然取得了很好的推荐效果,但较少考虑局部特征放大、信息交互和多嵌入聚合等问题。针对这些问题,提出了一种新的用于top-...异构信息网络(Heterogeneous Information Network, HIN)凭借其丰富的语义信息和结构信息被广泛应用于推荐系统中,虽然取得了很好的推荐效果,但较少考虑局部特征放大、信息交互和多嵌入聚合等问题。针对这些问题,提出了一种新的用于top-N推荐的多嵌入融合推荐(Multi-embedding Fusion Recommendation, MFRec)模型。首先,该模型在用户和项目学习分支中都采用对象上下文表示网络,充分利用上下文信息以放大局部特征,增强相邻节点的交互性;其次,将空洞卷积和空间金字塔池化引入元路径学习分支,以便获取多尺度信息并增强元路径的节点表示;然后,采用多嵌入融合模块以便更好地进行用户、项目以及元路径的嵌入融合,细粒度地进行多嵌入之间的交互学习,并强调了各特征的不同重要性程度;最后,在两个公共推荐系统数据集上进行了实验,结果表明所提模型MFRec优于现有的其他top-N推荐系统模型。展开更多
基金The National Natural Science Foundation of China(No.51875100)
文摘To improve the accuracy and robustness of rolling bearing fault diagnosis under complex conditions, a novel method based on multi-view feature fusion is proposed. Firstly, multi-view features from perspectives of the time domain, frequency domain and time-frequency domain are extracted through the Fourier transform, Hilbert transform and empirical mode decomposition (EMD).Then, the random forest model (RF) is applied to select features which are highly correlated with the bearing operating state. Subsequently, the selected features are fused via the autoencoder (AE) to further reduce the redundancy. Finally, the effectiveness of the fused features is evaluated by the support vector machine (SVM). The experimental results indicate that the proposed method based on the multi-view feature fusion can effectively reflect the difference in the state of the rolling bearing, and improve the accuracy of fault diagnosis.
基金This work is supported by the National Natural Science Foundation of China(No.61772561)the Key Research&Development Plan of Hunan Province(No.2018NK2012)+1 种基金the Science Research Projects of Hunan Provincial Education Department(Nos.18A174,18C0262)the Science&Technology Innovation Platform and Talent Plan of Hunan Province(2017TP1022).
文摘Hashing technology has the advantages of reducing data storage and improving the efficiency of the learning system,making it more and more widely used in image retrieval.Multi-view data describes image information more comprehensively than traditional methods using a single-view.How to use hashing to combine multi-view data for image retrieval is still a challenge.In this paper,a multi-view fusion hashing method based on RKCCA(Random Kernel Canonical Correlation Analysis)is proposed.In order to describe image content more accurately,we use deep learning dense convolutional network feature DenseNet to construct multi-view by combining GIST feature or BoW_SIFT(Bag-of-Words model+SIFT feature)feature.This algorithm uses RKCCA method to fuse multi-view features to construct association features and apply them to image retrieval.The algorithm generates binary hash code with minimal distortion error by designing quantization regularization terms.A large number of experiments on benchmark datasets show that this method is superior to other multi-view hashing methods.
文摘Deep multi-view subspace clustering (DMVSC) based on self-expression has attracted increasing attention dueto its outstanding performance and nonlinear application. However, most existing methods neglect that viewprivatemeaningless information or noise may interfere with the learning of self-expression, which may lead to thedegeneration of clustering performance. In this paper, we propose a novel framework of Contrastive Consistencyand Attentive Complementarity (CCAC) for DMVsSC. CCAC aligns all the self-expressions of multiple viewsand fuses them based on their discrimination, so that it can effectively explore consistent and complementaryinformation for achieving precise clustering. Specifically, the view-specific self-expression is learned by a selfexpressionlayer embedded into the auto-encoder network for each view. To guarantee consistency across views andreduce the effect of view-private information or noise, we align all the view-specific self-expressions by contrastivelearning. The aligned self-expressions are assigned adaptive weights by channel attention mechanism according totheir discrimination. Then they are fused by convolution kernel to obtain consensus self-expression withmaximumcomplementarity ofmultiple views. Extensive experimental results on four benchmark datasets and one large-scaledataset of the CCAC method outperformother state-of-the-artmethods, demonstrating its clustering effectiveness.
基金supported by the National Key R&D Program of China(2018AAA0101502)the Science and Technology Project of SGCC(State Grid Corporation of China):Fundamental Theory of Human-in-the-Loop Hybrid-Augmented Intelligence for Power Grid Dispatch and Control。
文摘Knowledge graphs(KGs)have been widely accepted as powerful tools for modeling the complex relationships between concepts and developing knowledge-based services.In recent years,researchers in the field of power systems have explored KGs to develop intelligent dispatching systems for increasingly large power grids.With multiple power grid dispatching knowledge graphs(PDKGs)constructed by different agencies,the knowledge fusion of different PDKGs is useful for providing more accurate decision supports.To achieve this,entity alignment that aims at connecting different KGs by identifying equivalent entities is a critical step.Existing entity alignment methods cannot integrate useful structural,attribute,and relational information while calculating entities’similarities and are prone to making many-to-one alignments,thus can hardly achieve the best performance.To address these issues,this paper proposes a collective entity alignment model that integrates three kinds of available information and makes collective counterpart assignments.This model proposes a novel knowledge graph attention network(KGAT)to learn the embeddings of entities and relations explicitly and calculates entities’similarities by adaptively incorporating the structural,attribute,and relational similarities.Then,we formulate the counterpart assignment task as an integer programming(IP)problem to obtain one-to-one alignments.We not only conduct experiments on a pair of PDKGs but also evaluate o ur model on three commonly used cross-lingual KGs.Experimental comparisons indicate that our model outperforms other methods and provides an effective tool for the knowledge fusion of PDKGs.
基金funded by State Grid Shandong Electric Power Company Science and Technology Project Funding under Grant no.520613200001,520613180002,62061318C002Weihai Scientific Research and Innovation Fund(2020).
文摘The recommendation algorithm based on collaborative filtering is currently the most successful recommendation method. It recommends items to theuser based on the known historical interaction data of the target user. Furthermore,the combination of the recommended algorithm based on collaborative filtrationand other auxiliary knowledge base is an effective way to improve the performance of the recommended system, of which the Co-Factorization Model(CoFM) is one representative research. CoFM, a fusion recommendation modelcombining the collaborative filtering model FM and the graph embeddingmodel TransE, introduces the information of many entities and their relationsin the knowledge graph into the recommendation system as effective auxiliaryinformation. It can effectively improve the accuracy of recommendations andalleviate the problem of sparse user historical interaction data. Unfortunately,the graph-embedded model TransE used in the CoFM model cannot solve the1-N, N-1, and N-N problems well. To tackle this problem, a novel fusion recommendation model Joint Factorization Machines and TransH Model (JFMH) isproposed, which improves CoFM by replacing the TransE model with TransHmodel. A large number of experiments on two widely used benchmark data setsshow that compared with CoFM, JFMH has improved performance in terms ofitem recommendation and knowledge graph completion, and is more competitivethan multiple baseline methods.