期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
High-resolution Remote Sensing Image Segmentation Using Minimum Spanning Tree Tessellation and RHMRF-FCM Algorithm 被引量:10
1
作者 Wenjie LIN Yu LI Quanhua ZHAO 《Journal of Geodesy and Geoinformation Science》 2020年第1期52-63,共12页
It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems i... It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems in the traditional pixel-based HMRF-FCM algorithm in which poor noise resistance and low precision segmentation in a complex boundary exist.By using the MST model and shape information,the object boundary and geometrical noise can be expressed and reduced respectively.Firstly,the static MST tessellation is employed for dividing the image domain into some sub-regions corresponding to the components of homogeneous regions needed to be segmented.Secondly,based on the tessellation results,the RHMRF model is built,and regulation terms considering the KL information and the information entropy are introduced into the FCM objective function.Finally,the partial differential method and Lagrange function are employed to calculate the parameters of the fuzzy objective function for obtaining the global optimal segmentation results.To verify the robustness and effectiveness of the proposed algorithm,the experiments are carried out with WorldView-3(WV-3)high resolution image.The results from proposed method with different parameters and comparing methods(multi-resolution method and watershed segmentation method in eCognition software)are analyzed qualitatively and quantitatively. 展开更多
关键词 STATIC minimum SPANNING TREE TESSELLATION shape parameter RHMRF FCM algorithm high-resolution remote sensing image segmentation
下载PDF
Simulation of Central Subpixel Location Method in Remote Sensing Multi-View Image
2
作者 Wan Bing 《计算机科学与技术汇刊(中英文版)》 2019年第1期45-48,共4页
Subpixel localization in image center is one of the key technologies of vision measurement. In order to meet the requirements of accurate calibration and measurement in multi-field, the existing sub-pixel positioning ... Subpixel localization in image center is one of the key technologies of vision measurement. In order to meet the requirements of accurate calibration and measurement in multi-field, the existing sub-pixel positioning methods are complex, the positioning accuracy is greatly affected by the effect of initial edge extraction, and the positioning accuracy is low. Because remote sensing multi-view images are usually not stationary random signals, in order to better express the non-stationary characteristics of images, random analysis is combined to segment sub-pixel objects in the center of remote sensing images. The accuracy of mark positioning will affect the accuracy of the whole measurement. The control point signs with different characteristics correspond to different recognition methods, so the selection of control point marks should be based on different requirements. It is used to describe the target view from different viewpoints and use the geometric features to retrieve the model library. The matching process uses global and local, statistical and structural target recognition features hierarchically, and is divided into two steps of retrieval and exact matching. The experiment was carried out to verify the effectiveness of the method. 展开更多
关键词 remote sensing multi-view imagE CENTRAL SUB-PIXEL LOCATION
下载PDF
A Remote Sensing Image Semantic Segmentation Method by Combining Deformable Convolution with Conditional Random Fields 被引量:12
3
作者 Zongcheng ZUO Wen ZHANG Dongying ZHANG 《Journal of Geodesy and Geoinformation Science》 2020年第3期39-49,共11页
Currently,deep convolutional neural networks have made great progress in the field of semantic segmentation.Because of the fixed convolution kernel geometry,standard convolution neural networks have been limited the a... Currently,deep convolutional neural networks have made great progress in the field of semantic segmentation.Because of the fixed convolution kernel geometry,standard convolution neural networks have been limited the ability to simulate geometric transformations.Therefore,a deformable convolution is introduced to enhance the adaptability of convolutional networks to spatial transformation.Considering that the deep convolutional neural networks cannot adequately segment the local objects at the output layer due to using the pooling layers in neural network architecture.To overcome this shortcoming,the rough prediction segmentation results of the neural network output layer will be processed by fully connected conditional random fields to improve the ability of image segmentation.The proposed method can easily be trained by end-to-end using standard backpropagation algorithms.Finally,the proposed method is tested on the ISPRS dataset.The results show that the proposed method can effectively overcome the influence of the complex structure of the segmentation object and obtain state-of-the-art accuracy on the ISPRS Vaihingen 2D semantic labeling dataset. 展开更多
关键词 high-resolution remote sensing image semantic segmentation deformable convolution network conditions random fields
下载PDF
Monitoring of vegetation coverage based on high-resolution images 被引量:3
4
作者 Zhang Li Li Li-juan +1 位作者 Liang Li-qiao Li Jiu-yi 《Forestry Studies in China》 CAS 2007年第4期256-261,共6页
Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensin... Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensing. Using the object-oriented analytical software, Definiens Professional 5, a new method for calculating vegetation coverage based on high-resolution images (aerial photographs or near-surface photography) is proposed. Our research supplies references to remote sensing measurements of vegetation coverage on a small scale and accurate fundamental data for the inversion model of vegetation coverage on a large and intermediate scale to improve the accuracy of remote sensing monitoring of changes in vegetation coverage. 展开更多
关键词 vegetation coverage remote sensing measurement high-resolution image OBJECT-ORIENTATION
下载PDF
RepDDNet:a fast and accurate deforestation detection model with high-resolution remote sensing image
5
作者 Zhipan Wang Zhongwu Wang +3 位作者 Dongmei Yan Zewen Mo Hua Zhang Qingling Zhang 《International Journal of Digital Earth》 SCIE EI 2023年第1期2013-2033,共21页
Forest is the largest carbon reservoir and carbon absorber on earth.Thus,mapping forest cover change accurately is of great significance to achieving the global carbon neutrality goal.Accurate forest change informatio... Forest is the largest carbon reservoir and carbon absorber on earth.Thus,mapping forest cover change accurately is of great significance to achieving the global carbon neutrality goal.Accurate forest change information could be acquired by deep learning methods using high-resolution remote sensing images.However,deforestation detection based on deep learning on a large-scale region with high-resolution images required huge computational resources.Therefore,there was an urgent need for a fast and accurate deforestation detection model.In this study,we proposed an interesting but effective re-parameterization deforestation detection model,named RepDDNet.Unlike other existing models designed for deforestation detection,the main feature of RepDDNet was its decoupling feature,which means that it allowed the multi-branch structure in the training stages to be converted into a plain structure in the inference stage,thus the computation efficiency can be significantly improved in the inference stage while maintaining the accuracy unchanged.A large-scale experiment was carried out in Ankang city with 2-meter high-resolution remote sensing images(the total area of it was over 20,000 square kilometers),and the result indicated that the model computation efficiency could be improved by nearly 30%compared with the model without re-parameterization.Additionally,compared with other lightweight models,RepDDNet also displayed a trade-off between accuracy and computation efficiency. 展开更多
关键词 Carbon neutral deforestation detection high-resolution remote sensing image deep learning reparameterization
原文传递
Monitoring the green evolution of vernacular buildings based on deep learning and multi-temporal remote sensing images 被引量:1
6
作者 Baohua Wen Fan Peng +4 位作者 Qingxin Yang Ting Lu Beifang Bai Shihai Wu Feng Xu 《Building Simulation》 SCIE EI CSCD 2023年第2期151-168,共18页
The increasingly mature computer vision(CV)technology represented by convolutional neural networks(CNN)and available high-resolution remote sensing images(HR-RSIs)provide opportunities to accurately measure the evolut... The increasingly mature computer vision(CV)technology represented by convolutional neural networks(CNN)and available high-resolution remote sensing images(HR-RSIs)provide opportunities to accurately measure the evolution of natural and artificial environments on Earth at a large scale.Based on the advanced CNN method high-resolution net(HRNet)and multi-temporal HR-RSIs,a framework is proposed for monitoring a green evolution of courtyard buildings characterized by their courtyards being roofed(CBR).The proposed framework consists of an expert module focusing on scenes analysis,a CV module for automatic detection,an evaluation module containing thresholds,and an output module for data analysis.Based on this,the changes in the adoption of different CBR technologies(CBRTs),including light-translucent CBRTs(LT-CBRTs)and non-lighttranslucent CBRTs(NLT-CBRTs),in 24 villages in southern Hebei were identified from 2007 to 2021.The evolution of CBRTs was featured as an inverse S-curve,and differences were found in their evolution stage,adoption ratio,and development speed for different villages.LT-CBRTs are the dominant type but are being replaced and surpassed by NLT-CBRTs in some villages,characterizing different preferences for the technology type of villages.The proposed research framework provides a reference for the evolution monitoring of vernacular buildings,and the identified evolution laws enable to trace and predict the adoption of different CBRTs in a particular village.This work lays a foundation for future exploration of the occurrence and development mechanism of the CBR phenomenon and provides an important reference for the optimization and promotion of CBRTs. 展开更多
关键词 courtyard buildings EVOLUTION deep learning high-resolution network remote sensing images
原文传递
Integration of optical and SAR remote sensing images for crop-type mapping based on a novel object-oriented feature selection method
7
作者 Jintian Cui Xin Zhang +1 位作者 Weisheng Wang Lei Wang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第1期178-190,共13页
Remote sensing is an important technical means to investigate land resources.Optical imagery has been widely used in crop classification and can show changes in moisture and chlorophyll content in crop leaves,whereas ... Remote sensing is an important technical means to investigate land resources.Optical imagery has been widely used in crop classification and can show changes in moisture and chlorophyll content in crop leaves,whereas synthetic aperture radar(SAR)imagery is sensitive to changes in growth states and morphological structures.Crop-type mapping with a single type of imagery sometimes has unsatisfactory precision,so providing precise spatiotemporal information on crop type at a local scale for agricultural applications is difficult.To explore the abilities of combining optical and SAR images and to solve the problem of inaccurate spatial information for land parcels,a new method is proposed in this paper to improve crop-type identification accuracy.Multifeatures were derived from the full polarimetric SAR data(GaoFen-3)and a high-resolution optical image(GaoFen-2),and the farmland parcels used as the basic for object-oriented classification were obtained from the GaoFen-2 image using optimal scale segmentation.A novel feature subset selection method based on within-class aggregation and between-class scatter(WA-BS)is proposed to extract the optimal feature subset.Finally,crop-type mapping was produced by a support vector machine(SVM)classifier.The results showed that the proposed method achieved good classification results with an overall accuracy of 89.50%,which is better than the crop classification results derived from SAR-based segmentation.Compared with the ReliefF,mRMR and LeastC feature selection algorithms,the WA-BS algorithm can effectively remove redundant features that are strongly correlated and obtain a high classification accuracy via the obtained optimal feature subset.This study shows that the accuracy of crop-type mapping in an area with multiple cropping patterns can be improved by the combination of optical and SAR remote sensing images. 展开更多
关键词 crop-type mapping synthetic aperture radar(SAR) high-resolution remote sensing image segmentation feature subset selection object-oriented classification
原文传递
Current issues in high-resolution earth observation technology 被引量:20
8
作者 LI DeRen TONG QingXi +2 位作者 LI RongXing GONG JianYa ZHANG LiangPei 《Science China Earth Sciences》 SCIE EI CAS 2012年第7期1043-1051,共9页
This paper reviewed the developments of the last ten years in the field of international high-resolution earth observation, and introduced the developmental status and plans for China's high-resolution earth obser... This paper reviewed the developments of the last ten years in the field of international high-resolution earth observation, and introduced the developmental status and plans for China's high-resolution earth observation program. In addition, this paper expounded the transformation mechanism and procedure from earth observation data to geospatial information and geographical knowledge, and examined the key scientific and technological issues, including earth observation networks, high-precision image positioning, image understanding, automatic spatial information extraction, and focus services. These analyses provide a new impetus for pushing the application of China's high-resolution earth observation system from a "quantity" to "quality" change, from China to the world, from providing products to providing online service. 展开更多
关键词 high-resolution earth observation sensor networks precision processing of remote sensing images automatic interpretation of remote sensing images focus services for spatial information
原文传递
Evaluation of Three-dimensional Urban Expansion: A Case Study of Yangzhou City, Jiangsu Province, China 被引量:11
9
作者 QIN Jing FANG Chuanglin +2 位作者 WANG Yang LI Guangdong WANG Shaojian 《Chinese Geographical Science》 SCIE CSCD 2015年第2期224-236,共13页
With rapid urban development in China in the last two decades, the three-dimensional(3D) characteristic has been the main feature of urban morphology. However, the vast majority of researches of urban growth have focu... With rapid urban development in China in the last two decades, the three-dimensional(3D) characteristic has been the main feature of urban morphology. However, the vast majority of researches of urban growth have focused on the planar area(two-dimensional(2D)) expansion. Few studies have been conducted from a 3D perspective. In this paper, the 3D urban expansion of the Yangzhou City, Jiangsu Province, China from 2003 to 2012 was evaluated based on Geographical Information System(GIS) tools and high-resolution remote sensing images. Four indices, namely weighted average height of buildings, volume of buildings, 3D expansion intensity and 3D fractal dimension are used to quantify the 3D urban expansion. The weighted average height of buildings and the volume of buildings are used to illustrate the temporal change of the 3D urban morphology, while the other two indices are used to calculate the expansion intensity and the fractal dimension of the 3D urban morphology. The results show that the spatial distribution of the high-rise buildings in Yangzhou has significantly spread and the utilization of the 3D space of Yangzhou has become more efficient and intensive. The methods proposed in this paper laid a foundation for a wide range of study of 3D urban morphology changes. 展开更多
关键词 three-dimensional urban morphology high-resolution remote sensing image three-dimensional expansion three-dimen-sional fractal Yangzhou City China
下载PDF
Assessment and Modeling of Geo-Spatial Technology and Geo-Spatial Intelligence Support for Joint Military Operations
10
作者 Nigatu Bekele 《Journal of Geographic Information System》 2019年第1期97-110,共14页
World military force structure is dramatically changing as collectively;our armed forces undergo a major transition from unprofessional to the Objective Force (designed to capitalize on information-age based technolog... World military force structure is dramatically changing as collectively;our armed forces undergo a major transition from unprofessional to the Objective Force (designed to capitalize on information-age based technologies and Human Interaction to Non-Human Interaction). Traditional “stovepipes” among services are being eliminated and replaced with integrated systems that allow joint forces (combined Army, Air Force and navy) to seamlessly execute required tasks. This study was undertaken in conjunction with Geospatial Technology (Shows Space and Time) and Geospatial Intelligence Analysis (Use Algorithm, Use AI Concepts, IMINT and GEOINT). In order to successfully support current and future Ethiopian military operations in war zones, geospatial technologies and geospatial intelligence must be integrated to accommodate force structure evolution and mission requirement directives. The intent of joint intelligence operations is to integrate Ground, Air and Navy Forces at war zone and also give COP (“common operational picture”) for Operational and Tactical Commander Service and national intelligence capabilities into a unified effort that surpasses any single organizational effort and provides the most accurate and timely intelligence to commanders. 展开更多
关键词 remote sensing GIS GPS UAVS high-resolution SATELLITE image
下载PDF
Mapping urban building stocks for vulnerability assessment  preliminary results 被引量:1
11
作者 Keiko Saito Robin Spence 《International Journal of Digital Earth》 SCIE 2011年第S01期117-130,共14页
This paper discusses a methodology to collect building inventory data by combining image processing techniques,field work or tools such as Google Street View and applying statistical inferences.Following the methodolo... This paper discusses a methodology to collect building inventory data by combining image processing techniques,field work or tools such as Google Street View and applying statistical inferences.Following the methodology outlined in Marinescu(2002),a family of Gabor filters are first constructed,which are then applied to an optical high-resolution image.The output from the processed image is segmented using Self-Organising Maps.This paper examines the relationship between the segmented areas in the image and the building type distribution within each segmented area,by deriving the distribution from field data.The relationship between the average number of buildings in these cells against the number of grid cells allocated to each segmentation cluster is also investigated.Finally,using these results,the overall building inventory distribution for the whole of the case study site of Pylos is presented. 展开更多
关键词 building inventory data collection remote sensing high-resolution optical satellite images Gabor filters Self-Organising Maps field data
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部