It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems i...It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems in the traditional pixel-based HMRF-FCM algorithm in which poor noise resistance and low precision segmentation in a complex boundary exist.By using the MST model and shape information,the object boundary and geometrical noise can be expressed and reduced respectively.Firstly,the static MST tessellation is employed for dividing the image domain into some sub-regions corresponding to the components of homogeneous regions needed to be segmented.Secondly,based on the tessellation results,the RHMRF model is built,and regulation terms considering the KL information and the information entropy are introduced into the FCM objective function.Finally,the partial differential method and Lagrange function are employed to calculate the parameters of the fuzzy objective function for obtaining the global optimal segmentation results.To verify the robustness and effectiveness of the proposed algorithm,the experiments are carried out with WorldView-3(WV-3)high resolution image.The results from proposed method with different parameters and comparing methods(multi-resolution method and watershed segmentation method in eCognition software)are analyzed qualitatively and quantitatively.展开更多
Subpixel localization in image center is one of the key technologies of vision measurement. In order to meet the requirements of accurate calibration and measurement in multi-field, the existing sub-pixel positioning ...Subpixel localization in image center is one of the key technologies of vision measurement. In order to meet the requirements of accurate calibration and measurement in multi-field, the existing sub-pixel positioning methods are complex, the positioning accuracy is greatly affected by the effect of initial edge extraction, and the positioning accuracy is low. Because remote sensing multi-view images are usually not stationary random signals, in order to better express the non-stationary characteristics of images, random analysis is combined to segment sub-pixel objects in the center of remote sensing images. The accuracy of mark positioning will affect the accuracy of the whole measurement. The control point signs with different characteristics correspond to different recognition methods, so the selection of control point marks should be based on different requirements. It is used to describe the target view from different viewpoints and use the geometric features to retrieve the model library. The matching process uses global and local, statistical and structural target recognition features hierarchically, and is divided into two steps of retrieval and exact matching. The experiment was carried out to verify the effectiveness of the method.展开更多
Currently,deep convolutional neural networks have made great progress in the field of semantic segmentation.Because of the fixed convolution kernel geometry,standard convolution neural networks have been limited the a...Currently,deep convolutional neural networks have made great progress in the field of semantic segmentation.Because of the fixed convolution kernel geometry,standard convolution neural networks have been limited the ability to simulate geometric transformations.Therefore,a deformable convolution is introduced to enhance the adaptability of convolutional networks to spatial transformation.Considering that the deep convolutional neural networks cannot adequately segment the local objects at the output layer due to using the pooling layers in neural network architecture.To overcome this shortcoming,the rough prediction segmentation results of the neural network output layer will be processed by fully connected conditional random fields to improve the ability of image segmentation.The proposed method can easily be trained by end-to-end using standard backpropagation algorithms.Finally,the proposed method is tested on the ISPRS dataset.The results show that the proposed method can effectively overcome the influence of the complex structure of the segmentation object and obtain state-of-the-art accuracy on the ISPRS Vaihingen 2D semantic labeling dataset.展开更多
Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensin...Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensing. Using the object-oriented analytical software, Definiens Professional 5, a new method for calculating vegetation coverage based on high-resolution images (aerial photographs or near-surface photography) is proposed. Our research supplies references to remote sensing measurements of vegetation coverage on a small scale and accurate fundamental data for the inversion model of vegetation coverage on a large and intermediate scale to improve the accuracy of remote sensing monitoring of changes in vegetation coverage.展开更多
Forest is the largest carbon reservoir and carbon absorber on earth.Thus,mapping forest cover change accurately is of great significance to achieving the global carbon neutrality goal.Accurate forest change informatio...Forest is the largest carbon reservoir and carbon absorber on earth.Thus,mapping forest cover change accurately is of great significance to achieving the global carbon neutrality goal.Accurate forest change information could be acquired by deep learning methods using high-resolution remote sensing images.However,deforestation detection based on deep learning on a large-scale region with high-resolution images required huge computational resources.Therefore,there was an urgent need for a fast and accurate deforestation detection model.In this study,we proposed an interesting but effective re-parameterization deforestation detection model,named RepDDNet.Unlike other existing models designed for deforestation detection,the main feature of RepDDNet was its decoupling feature,which means that it allowed the multi-branch structure in the training stages to be converted into a plain structure in the inference stage,thus the computation efficiency can be significantly improved in the inference stage while maintaining the accuracy unchanged.A large-scale experiment was carried out in Ankang city with 2-meter high-resolution remote sensing images(the total area of it was over 20,000 square kilometers),and the result indicated that the model computation efficiency could be improved by nearly 30%compared with the model without re-parameterization.Additionally,compared with other lightweight models,RepDDNet also displayed a trade-off between accuracy and computation efficiency.展开更多
The increasingly mature computer vision(CV)technology represented by convolutional neural networks(CNN)and available high-resolution remote sensing images(HR-RSIs)provide opportunities to accurately measure the evolut...The increasingly mature computer vision(CV)technology represented by convolutional neural networks(CNN)and available high-resolution remote sensing images(HR-RSIs)provide opportunities to accurately measure the evolution of natural and artificial environments on Earth at a large scale.Based on the advanced CNN method high-resolution net(HRNet)and multi-temporal HR-RSIs,a framework is proposed for monitoring a green evolution of courtyard buildings characterized by their courtyards being roofed(CBR).The proposed framework consists of an expert module focusing on scenes analysis,a CV module for automatic detection,an evaluation module containing thresholds,and an output module for data analysis.Based on this,the changes in the adoption of different CBR technologies(CBRTs),including light-translucent CBRTs(LT-CBRTs)and non-lighttranslucent CBRTs(NLT-CBRTs),in 24 villages in southern Hebei were identified from 2007 to 2021.The evolution of CBRTs was featured as an inverse S-curve,and differences were found in their evolution stage,adoption ratio,and development speed for different villages.LT-CBRTs are the dominant type but are being replaced and surpassed by NLT-CBRTs in some villages,characterizing different preferences for the technology type of villages.The proposed research framework provides a reference for the evolution monitoring of vernacular buildings,and the identified evolution laws enable to trace and predict the adoption of different CBRTs in a particular village.This work lays a foundation for future exploration of the occurrence and development mechanism of the CBR phenomenon and provides an important reference for the optimization and promotion of CBRTs.展开更多
Remote sensing is an important technical means to investigate land resources.Optical imagery has been widely used in crop classification and can show changes in moisture and chlorophyll content in crop leaves,whereas ...Remote sensing is an important technical means to investigate land resources.Optical imagery has been widely used in crop classification and can show changes in moisture and chlorophyll content in crop leaves,whereas synthetic aperture radar(SAR)imagery is sensitive to changes in growth states and morphological structures.Crop-type mapping with a single type of imagery sometimes has unsatisfactory precision,so providing precise spatiotemporal information on crop type at a local scale for agricultural applications is difficult.To explore the abilities of combining optical and SAR images and to solve the problem of inaccurate spatial information for land parcels,a new method is proposed in this paper to improve crop-type identification accuracy.Multifeatures were derived from the full polarimetric SAR data(GaoFen-3)and a high-resolution optical image(GaoFen-2),and the farmland parcels used as the basic for object-oriented classification were obtained from the GaoFen-2 image using optimal scale segmentation.A novel feature subset selection method based on within-class aggregation and between-class scatter(WA-BS)is proposed to extract the optimal feature subset.Finally,crop-type mapping was produced by a support vector machine(SVM)classifier.The results showed that the proposed method achieved good classification results with an overall accuracy of 89.50%,which is better than the crop classification results derived from SAR-based segmentation.Compared with the ReliefF,mRMR and LeastC feature selection algorithms,the WA-BS algorithm can effectively remove redundant features that are strongly correlated and obtain a high classification accuracy via the obtained optimal feature subset.This study shows that the accuracy of crop-type mapping in an area with multiple cropping patterns can be improved by the combination of optical and SAR remote sensing images.展开更多
This paper reviewed the developments of the last ten years in the field of international high-resolution earth observation, and introduced the developmental status and plans for China's high-resolution earth obser...This paper reviewed the developments of the last ten years in the field of international high-resolution earth observation, and introduced the developmental status and plans for China's high-resolution earth observation program. In addition, this paper expounded the transformation mechanism and procedure from earth observation data to geospatial information and geographical knowledge, and examined the key scientific and technological issues, including earth observation networks, high-precision image positioning, image understanding, automatic spatial information extraction, and focus services. These analyses provide a new impetus for pushing the application of China's high-resolution earth observation system from a "quantity" to "quality" change, from China to the world, from providing products to providing online service.展开更多
With rapid urban development in China in the last two decades, the three-dimensional(3D) characteristic has been the main feature of urban morphology. However, the vast majority of researches of urban growth have focu...With rapid urban development in China in the last two decades, the three-dimensional(3D) characteristic has been the main feature of urban morphology. However, the vast majority of researches of urban growth have focused on the planar area(two-dimensional(2D)) expansion. Few studies have been conducted from a 3D perspective. In this paper, the 3D urban expansion of the Yangzhou City, Jiangsu Province, China from 2003 to 2012 was evaluated based on Geographical Information System(GIS) tools and high-resolution remote sensing images. Four indices, namely weighted average height of buildings, volume of buildings, 3D expansion intensity and 3D fractal dimension are used to quantify the 3D urban expansion. The weighted average height of buildings and the volume of buildings are used to illustrate the temporal change of the 3D urban morphology, while the other two indices are used to calculate the expansion intensity and the fractal dimension of the 3D urban morphology. The results show that the spatial distribution of the high-rise buildings in Yangzhou has significantly spread and the utilization of the 3D space of Yangzhou has become more efficient and intensive. The methods proposed in this paper laid a foundation for a wide range of study of 3D urban morphology changes.展开更多
World military force structure is dramatically changing as collectively;our armed forces undergo a major transition from unprofessional to the Objective Force (designed to capitalize on information-age based technolog...World military force structure is dramatically changing as collectively;our armed forces undergo a major transition from unprofessional to the Objective Force (designed to capitalize on information-age based technologies and Human Interaction to Non-Human Interaction). Traditional “stovepipes” among services are being eliminated and replaced with integrated systems that allow joint forces (combined Army, Air Force and navy) to seamlessly execute required tasks. This study was undertaken in conjunction with Geospatial Technology (Shows Space and Time) and Geospatial Intelligence Analysis (Use Algorithm, Use AI Concepts, IMINT and GEOINT). In order to successfully support current and future Ethiopian military operations in war zones, geospatial technologies and geospatial intelligence must be integrated to accommodate force structure evolution and mission requirement directives. The intent of joint intelligence operations is to integrate Ground, Air and Navy Forces at war zone and also give COP (“common operational picture”) for Operational and Tactical Commander Service and national intelligence capabilities into a unified effort that surpasses any single organizational effort and provides the most accurate and timely intelligence to commanders.展开更多
This paper discusses a methodology to collect building inventory data by combining image processing techniques,field work or tools such as Google Street View and applying statistical inferences.Following the methodolo...This paper discusses a methodology to collect building inventory data by combining image processing techniques,field work or tools such as Google Street View and applying statistical inferences.Following the methodology outlined in Marinescu(2002),a family of Gabor filters are first constructed,which are then applied to an optical high-resolution image.The output from the processed image is segmented using Self-Organising Maps.This paper examines the relationship between the segmented areas in the image and the building type distribution within each segmented area,by deriving the distribution from field data.The relationship between the average number of buildings in these cells against the number of grid cells allocated to each segmentation cluster is also investigated.Finally,using these results,the overall building inventory distribution for the whole of the case study site of Pylos is presented.展开更多
基金National Natural Science Foundation of China(No.41271435)National Natural Science Foundation of China Youth Found(No.41301479)。
文摘It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems in the traditional pixel-based HMRF-FCM algorithm in which poor noise resistance and low precision segmentation in a complex boundary exist.By using the MST model and shape information,the object boundary and geometrical noise can be expressed and reduced respectively.Firstly,the static MST tessellation is employed for dividing the image domain into some sub-regions corresponding to the components of homogeneous regions needed to be segmented.Secondly,based on the tessellation results,the RHMRF model is built,and regulation terms considering the KL information and the information entropy are introduced into the FCM objective function.Finally,the partial differential method and Lagrange function are employed to calculate the parameters of the fuzzy objective function for obtaining the global optimal segmentation results.To verify the robustness and effectiveness of the proposed algorithm,the experiments are carried out with WorldView-3(WV-3)high resolution image.The results from proposed method with different parameters and comparing methods(multi-resolution method and watershed segmentation method in eCognition software)are analyzed qualitatively and quantitatively.
文摘Subpixel localization in image center is one of the key technologies of vision measurement. In order to meet the requirements of accurate calibration and measurement in multi-field, the existing sub-pixel positioning methods are complex, the positioning accuracy is greatly affected by the effect of initial edge extraction, and the positioning accuracy is low. Because remote sensing multi-view images are usually not stationary random signals, in order to better express the non-stationary characteristics of images, random analysis is combined to segment sub-pixel objects in the center of remote sensing images. The accuracy of mark positioning will affect the accuracy of the whole measurement. The control point signs with different characteristics correspond to different recognition methods, so the selection of control point marks should be based on different requirements. It is used to describe the target view from different viewpoints and use the geometric features to retrieve the model library. The matching process uses global and local, statistical and structural target recognition features hierarchically, and is divided into two steps of retrieval and exact matching. The experiment was carried out to verify the effectiveness of the method.
基金National Key Research and Development Program of China(No.2017YFC0405806)。
文摘Currently,deep convolutional neural networks have made great progress in the field of semantic segmentation.Because of the fixed convolution kernel geometry,standard convolution neural networks have been limited the ability to simulate geometric transformations.Therefore,a deformable convolution is introduced to enhance the adaptability of convolutional networks to spatial transformation.Considering that the deep convolutional neural networks cannot adequately segment the local objects at the output layer due to using the pooling layers in neural network architecture.To overcome this shortcoming,the rough prediction segmentation results of the neural network output layer will be processed by fully connected conditional random fields to improve the ability of image segmentation.The proposed method can easily be trained by end-to-end using standard backpropagation algorithms.Finally,the proposed method is tested on the ISPRS dataset.The results show that the proposed method can effectively overcome the influence of the complex structure of the segmentation object and obtain state-of-the-art accuracy on the ISPRS Vaihingen 2D semantic labeling dataset.
基金funded by the National Natural Science Foundation of China(Grant No.40571029).
文摘Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensing. Using the object-oriented analytical software, Definiens Professional 5, a new method for calculating vegetation coverage based on high-resolution images (aerial photographs or near-surface photography) is proposed. Our research supplies references to remote sensing measurements of vegetation coverage on a small scale and accurate fundamental data for the inversion model of vegetation coverage on a large and intermediate scale to improve the accuracy of remote sensing monitoring of changes in vegetation coverage.
基金supported by the Shenzhen Science and Technology Innovation Project(No.ZDSYS20210623091808026)supported in part by the National Natural Science Foundation of China(General Program,No.42071351)+1 种基金the National Key Research and Development Program of China(No.2020YFA0608501)the Chongqing Science and Technology Bureau technology innovation and application development special(cstc2021jscx-gksb0116).
文摘Forest is the largest carbon reservoir and carbon absorber on earth.Thus,mapping forest cover change accurately is of great significance to achieving the global carbon neutrality goal.Accurate forest change information could be acquired by deep learning methods using high-resolution remote sensing images.However,deforestation detection based on deep learning on a large-scale region with high-resolution images required huge computational resources.Therefore,there was an urgent need for a fast and accurate deforestation detection model.In this study,we proposed an interesting but effective re-parameterization deforestation detection model,named RepDDNet.Unlike other existing models designed for deforestation detection,the main feature of RepDDNet was its decoupling feature,which means that it allowed the multi-branch structure in the training stages to be converted into a plain structure in the inference stage,thus the computation efficiency can be significantly improved in the inference stage while maintaining the accuracy unchanged.A large-scale experiment was carried out in Ankang city with 2-meter high-resolution remote sensing images(the total area of it was over 20,000 square kilometers),and the result indicated that the model computation efficiency could be improved by nearly 30%compared with the model without re-parameterization.Additionally,compared with other lightweight models,RepDDNet also displayed a trade-off between accuracy and computation efficiency.
基金supported by National Natural Science Foundation of China (No.52108010).
文摘The increasingly mature computer vision(CV)technology represented by convolutional neural networks(CNN)and available high-resolution remote sensing images(HR-RSIs)provide opportunities to accurately measure the evolution of natural and artificial environments on Earth at a large scale.Based on the advanced CNN method high-resolution net(HRNet)and multi-temporal HR-RSIs,a framework is proposed for monitoring a green evolution of courtyard buildings characterized by their courtyards being roofed(CBR).The proposed framework consists of an expert module focusing on scenes analysis,a CV module for automatic detection,an evaluation module containing thresholds,and an output module for data analysis.Based on this,the changes in the adoption of different CBR technologies(CBRTs),including light-translucent CBRTs(LT-CBRTs)and non-lighttranslucent CBRTs(NLT-CBRTs),in 24 villages in southern Hebei were identified from 2007 to 2021.The evolution of CBRTs was featured as an inverse S-curve,and differences were found in their evolution stage,adoption ratio,and development speed for different villages.LT-CBRTs are the dominant type but are being replaced and surpassed by NLT-CBRTs in some villages,characterizing different preferences for the technology type of villages.The proposed research framework provides a reference for the evolution monitoring of vernacular buildings,and the identified evolution laws enable to trace and predict the adoption of different CBRTs in a particular village.This work lays a foundation for future exploration of the occurrence and development mechanism of the CBR phenomenon and provides an important reference for the optimization and promotion of CBRTs.
基金The authors acknowledge that this study was financially supported by the National Key R&D Programs of China(No.2017YFB0504201)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA20020101)+1 种基金and the Natural Science Foundation of China(No.61473286 and No.61375002)Our sincere thanks go to the students at the State Key Laboratory of Remote Sensing Science for their assistance during the field survey campaigns.
文摘Remote sensing is an important technical means to investigate land resources.Optical imagery has been widely used in crop classification and can show changes in moisture and chlorophyll content in crop leaves,whereas synthetic aperture radar(SAR)imagery is sensitive to changes in growth states and morphological structures.Crop-type mapping with a single type of imagery sometimes has unsatisfactory precision,so providing precise spatiotemporal information on crop type at a local scale for agricultural applications is difficult.To explore the abilities of combining optical and SAR images and to solve the problem of inaccurate spatial information for land parcels,a new method is proposed in this paper to improve crop-type identification accuracy.Multifeatures were derived from the full polarimetric SAR data(GaoFen-3)and a high-resolution optical image(GaoFen-2),and the farmland parcels used as the basic for object-oriented classification were obtained from the GaoFen-2 image using optimal scale segmentation.A novel feature subset selection method based on within-class aggregation and between-class scatter(WA-BS)is proposed to extract the optimal feature subset.Finally,crop-type mapping was produced by a support vector machine(SVM)classifier.The results showed that the proposed method achieved good classification results with an overall accuracy of 89.50%,which is better than the crop classification results derived from SAR-based segmentation.Compared with the ReliefF,mRMR and LeastC feature selection algorithms,the WA-BS algorithm can effectively remove redundant features that are strongly correlated and obtain a high classification accuracy via the obtained optimal feature subset.This study shows that the accuracy of crop-type mapping in an area with multiple cropping patterns can be improved by the combination of optical and SAR remote sensing images.
基金supported by National Basic Research Program of China(Grant No. 2012CB719906)
文摘This paper reviewed the developments of the last ten years in the field of international high-resolution earth observation, and introduced the developmental status and plans for China's high-resolution earth observation program. In addition, this paper expounded the transformation mechanism and procedure from earth observation data to geospatial information and geographical knowledge, and examined the key scientific and technological issues, including earth observation networks, high-precision image positioning, image understanding, automatic spatial information extraction, and focus services. These analyses provide a new impetus for pushing the application of China's high-resolution earth observation system from a "quantity" to "quality" change, from China to the world, from providing products to providing online service.
基金Under the auspices of Major Project of National Social Science Foundation of China(No.13&ZD13027)National Science&Technology Pillar Program During 12th Five-year Plan Period(No.2012BAJ22B03-04)National Natural Science Foundation of China(No.41401164)
文摘With rapid urban development in China in the last two decades, the three-dimensional(3D) characteristic has been the main feature of urban morphology. However, the vast majority of researches of urban growth have focused on the planar area(two-dimensional(2D)) expansion. Few studies have been conducted from a 3D perspective. In this paper, the 3D urban expansion of the Yangzhou City, Jiangsu Province, China from 2003 to 2012 was evaluated based on Geographical Information System(GIS) tools and high-resolution remote sensing images. Four indices, namely weighted average height of buildings, volume of buildings, 3D expansion intensity and 3D fractal dimension are used to quantify the 3D urban expansion. The weighted average height of buildings and the volume of buildings are used to illustrate the temporal change of the 3D urban morphology, while the other two indices are used to calculate the expansion intensity and the fractal dimension of the 3D urban morphology. The results show that the spatial distribution of the high-rise buildings in Yangzhou has significantly spread and the utilization of the 3D space of Yangzhou has become more efficient and intensive. The methods proposed in this paper laid a foundation for a wide range of study of 3D urban morphology changes.
文摘World military force structure is dramatically changing as collectively;our armed forces undergo a major transition from unprofessional to the Objective Force (designed to capitalize on information-age based technologies and Human Interaction to Non-Human Interaction). Traditional “stovepipes” among services are being eliminated and replaced with integrated systems that allow joint forces (combined Army, Air Force and navy) to seamlessly execute required tasks. This study was undertaken in conjunction with Geospatial Technology (Shows Space and Time) and Geospatial Intelligence Analysis (Use Algorithm, Use AI Concepts, IMINT and GEOINT). In order to successfully support current and future Ethiopian military operations in war zones, geospatial technologies and geospatial intelligence must be integrated to accommodate force structure evolution and mission requirement directives. The intent of joint intelligence operations is to integrate Ground, Air and Navy Forces at war zone and also give COP (“common operational picture”) for Operational and Tactical Commander Service and national intelligence capabilities into a unified effort that surpasses any single organizational effort and provides the most accurate and timely intelligence to commanders.
文摘This paper discusses a methodology to collect building inventory data by combining image processing techniques,field work or tools such as Google Street View and applying statistical inferences.Following the methodology outlined in Marinescu(2002),a family of Gabor filters are first constructed,which are then applied to an optical high-resolution image.The output from the processed image is segmented using Self-Organising Maps.This paper examines the relationship between the segmented areas in the image and the building type distribution within each segmented area,by deriving the distribution from field data.The relationship between the average number of buildings in these cells against the number of grid cells allocated to each segmentation cluster is also investigated.Finally,using these results,the overall building inventory distribution for the whole of the case study site of Pylos is presented.