This paper analyzes the technical characteristic of three-dimensional display technology (3DTV) system and some core technologies yet to be solved. It points out the ways to solve these problems and presents an effe...This paper analyzes the technical characteristic of three-dimensional display technology (3DTV) system and some core technologies yet to be solved. It points out the ways to solve these problems and presents an effective solution for thediscomfort of watching the three-dimensional TV.展开更多
A micro-projection dynamic backlight for multi-view three-dimensional(3D)display is proposed.The proposed backlight includes a light emitting diodes(LEDs)array,a lenticular lens array,and a scattering film.The LED arr...A micro-projection dynamic backlight for multi-view three-dimensional(3D)display is proposed.The proposed backlight includes a light emitting diodes(LEDs)array,a lenticular lens array,and a scattering film.The LED array,the lenticular lens,and the scattering film construct a micro-projection structure.In this structure,the LEDs in the array are divided into several groups.The light from each LED group can be projected to the scattering film by the lenticular lens and forms a series of bright stripes.The different LED groups have different horizontal positions,so these bright stripes corresponding to different LED groups also have different horizontal positions.Therefore,they can be used as a dynamic backlight.Because the distance between the LEDs array and the lenticular lens is much larger than the distance between the lenticular lens and the scattering films,the imaging progress will make the width of the bright stripes much smaller than that of the LEDs,and the pitch of the stripes is also decreased.According to the 3D display theory,the bright stripes with small width and pitch help to increase the number of views.Therefore,the proposed micro-projection dynamic backlight is very suitable for multi-view 3D display.An experimental prototype was developed,and the experimental results show that the micro-projection dynamic backlight can correctly complete the directional projection of the parallax images to form a 3D display.展开更多
The consumer demand for emerging technologies such as augmented reality(AR),autopilot,and three-dimensional(3D)internet has rapidly promoted the application of novel optical display devices in innovative industries.Ho...The consumer demand for emerging technologies such as augmented reality(AR),autopilot,and three-dimensional(3D)internet has rapidly promoted the application of novel optical display devices in innovative industries.However,the micro/nanomanufacturing of high-resolution optical display devices is the primary issue restricting their development.The manufacturing technology of micro/nanostructures,methods of display mechanisms,display materials,and mass production of display devices are major technical obstacles.To comprehensively understand the latest state-of-the-art and trigger new technological breakthroughs,this study reviews the recent research progress of master molds produced using nanoimprint technology for new optical devices,particularly AR glasses,new-generation light-emitting diode car lighting,and naked-eye 3D display mechanisms,and their manufacturing techniques of master molds.The focus is on the relationships among the manufacturing process,microstructure,and display of a new optical device.Nanoimprint master molds are reviewed for the manufacturing and application of new optical devices,and the challenges and prospects of the new optical device diffraction grating nanoimprint technology are discussed.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.60832003)the Science and Technology Commission of Shanghai Municipality(Grant No.10510500500)the Key Laboratory of Advanced Display and System Applications(Shanghai University),Ministry of Education,China(Grant No.P200801)
文摘This paper analyzes the technical characteristic of three-dimensional display technology (3DTV) system and some core technologies yet to be solved. It points out the ways to solve these problems and presents an effective solution for thediscomfort of watching the three-dimensional TV.
基金supported by the National Natural Science Foundation of China (NSFC) (No. 61705022)Research Programs of Science and Technology Department of Sichuan Province (Nos. 2019JDRC0075 and 2019YJ0377)+2 种基金Sichuan Academic Achievement Analysis and Application Research Center Project (No. w16216284)Enterprise Research Project of Chengdu Technological University (No. 2020QY005)Seed Fund Project of Intelligent Air Vehicle Research Center (No. 2020ZZ002)
文摘A micro-projection dynamic backlight for multi-view three-dimensional(3D)display is proposed.The proposed backlight includes a light emitting diodes(LEDs)array,a lenticular lens array,and a scattering film.The LED array,the lenticular lens,and the scattering film construct a micro-projection structure.In this structure,the LEDs in the array are divided into several groups.The light from each LED group can be projected to the scattering film by the lenticular lens and forms a series of bright stripes.The different LED groups have different horizontal positions,so these bright stripes corresponding to different LED groups also have different horizontal positions.Therefore,they can be used as a dynamic backlight.Because the distance between the LEDs array and the lenticular lens is much larger than the distance between the lenticular lens and the scattering films,the imaging progress will make the width of the bright stripes much smaller than that of the LEDs,and the pitch of the stripes is also decreased.According to the 3D display theory,the bright stripes with small width and pitch help to increase the number of views.Therefore,the proposed micro-projection dynamic backlight is very suitable for multi-view 3D display.An experimental prototype was developed,and the experimental results show that the micro-projection dynamic backlight can correctly complete the directional projection of the parallax images to form a 3D display.
基金supported by the Fundamental Key Research Project of Shenzhen(Grant No.JCYJ20210324115806017)the Innovation and Entrepreneurship Project for Overseas High-Level Talents of Shenzhen(Grant No.KQJSCX20180328095603847)+1 种基金the National Natural Science Foundation of China(Grant No.51805331)the National Key R&D Program of China(Grant No.6142005180401).
文摘The consumer demand for emerging technologies such as augmented reality(AR),autopilot,and three-dimensional(3D)internet has rapidly promoted the application of novel optical display devices in innovative industries.However,the micro/nanomanufacturing of high-resolution optical display devices is the primary issue restricting their development.The manufacturing technology of micro/nanostructures,methods of display mechanisms,display materials,and mass production of display devices are major technical obstacles.To comprehensively understand the latest state-of-the-art and trigger new technological breakthroughs,this study reviews the recent research progress of master molds produced using nanoimprint technology for new optical devices,particularly AR glasses,new-generation light-emitting diode car lighting,and naked-eye 3D display mechanisms,and their manufacturing techniques of master molds.The focus is on the relationships among the manufacturing process,microstructure,and display of a new optical device.Nanoimprint master molds are reviewed for the manufacturing and application of new optical devices,and the challenges and prospects of the new optical device diffraction grating nanoimprint technology are discussed.