Asymmetric stereoscopic video coding can take advantage of binocular suppression in human vision by representing one of the two views in lower quality.This paper proposes a bit allocation strategy for asymmetric stere...Asymmetric stereoscopic video coding can take advantage of binocular suppression in human vision by representing one of the two views in lower quality.This paper proposes a bit allocation strategy for asymmetric stereoscopic video coding.In order to improve the accuracy of bit allocation and rate control in the left view,a proportionalintegral-derivative controller is adopted.Meanwhile,to control the quality fluctuation between consecutive frames of the left view,a quality controller is adopted.Besides,a fuzzy controller is proposed to control the variation in quality between the left and right views by comparing the PSNR disparity of two views with a fixed threshold,which is used to quantize the binocular psycho-visual redundancy and adjust the quantization parameter (QP) of the right view correspondingly.The proposed algorithm has been implemented in H.264/AVC video codec,and the experimental results show its effectiveness in rate control while keeping a good quality for the left view,and fewer bits are allocated for the right view so that the overall bit rate is saved by 7.2% at most without the loss of subjective visual quality for stereoscopic video.展开更多
The authors propose a novel method for transporting multi-view videos that aims to keep the bandwidth requirements on both end-users and servers as low as possible. The method is based on application layer multicast, ...The authors propose a novel method for transporting multi-view videos that aims to keep the bandwidth requirements on both end-users and servers as low as possible. The method is based on application layer multicast, where each end point re- ceives only a selected number of views required for rendering video from its current viewpoint at any given time. The set of selected videos changes in real time as the user’s viewpoint changes because of head or eye movements. Techniques for reducing the black-outs during fast viewpoint changes were investigated. The performance of the approach was studied through network experiments.展开更多
Color inconsistency between views is an important problem to be solved in multi-view video systems. A multi-view video color correction method using dynamic programming is proposed. Three-dimensional histograms are co...Color inconsistency between views is an important problem to be solved in multi-view video systems. A multi-view video color correction method using dynamic programming is proposed. Three-dimensional histograms are constructed with sequential conditional probability in HSI color space. Then, dynamic programming is used to seek the best color mapping relation with the minimum cost path between target image histogram and source image histogram. Finally, video tracking technique is performed to correct multi-view video. Experimental results show that the proposed method can obtain better subjective and objective performance in color correction.展开更多
A novel color compensation method for multi-view video coding (MVC) is proposed, which efficiently exploits the inter-view dependencies between views with the existence of color mismatch caused by the diversity of cam...A novel color compensation method for multi-view video coding (MVC) is proposed, which efficiently exploits the inter-view dependencies between views with the existence of color mismatch caused by the diversity of cameras. A color compensation model is developed in RGB channels and then extended to YCbCr channels for practical use. A modified inter-view reference picture is constructed based on the color compensation model, which is more similar to the coding picture than the original inter-view reference picture. Moreover, the color compensation factors can be derived in both encoder and decoder, therefore no additional data need to be transmitted to the decoder. The experimental results show that the proposed method improves the coding efficiency of MVC and maintains good subjective quality.展开更多
Current multi-view video coding (MVC) reference model in joint video team (JVT) does not provide efficient rate control schemes. This paper presents a rate control algorithm for MVC by improving the quadratic rate...Current multi-view video coding (MVC) reference model in joint video team (JVT) does not provide efficient rate control schemes. This paper presents a rate control algorithm for MVC by improving the quadratic rate-distortion (R-D) model. We reasonably allocate bit-rate among views based on the correlation analysisl The proposed algorithm consists of three levels to control the rate bits more accurately, of which the frame layer allocates bits according to the frame complexity and the temporal activity. Extensive experiments show that the proposed algorithm can control the bit rate efficiently.展开更多
The variable block-size motion estimation(ME) and disparity estimation(DE) are adopted in multi-view video coding(MVC) to achieve high coding efficiency. However, much higher computational complexity is also introduce...The variable block-size motion estimation(ME) and disparity estimation(DE) are adopted in multi-view video coding(MVC) to achieve high coding efficiency. However, much higher computational complexity is also introduced in coding system, which hinders practical application of MVC. An efficient fast mode decision method using mode complexity is proposed to reduce the computational complexity. In the proposed method, mode complexity is firstly computed by using the spatial, temporal and inter-view correlation between the current macroblock(MB) and its neighboring MBs. Based on the observation that direct mode is highly possible to be the optimal mode, mode complexity is always checked in advance whether it is below a predefined threshold for providing an efficient early termination opportunity. If this early termination condition is not met, three mode types for the MBs are classified according to the value of mode complexity, i.e., simple mode, medium mode and complex mode, to speed up the encoding process by reducing the number of the variable block modes required to be checked. Furthermore, for simple and medium mode region, the rate distortion(RD) cost of mode 16×16 in the temporal prediction direction is compared with that of the disparity prediction direction, to determine in advance whether the optimal prediction direction is in the temporal prediction direction or not, for skipping unnecessary disparity estimation. Experimental results show that the proposed method is able to significantly reduce the computational load by 78.79% and the total bit rate by 0.07% on average, while only incurring a negligible loss of PSNR(about 0.04 d B on average), compared with the full mode decision(FMD) in the reference software of MVC.展开更多
Color inconsistency between views is an important problem to be solved in multi-view video applications, such as free viewpoint television and other three-dimensional video systems. In this paper, by combining with mu...Color inconsistency between views is an important problem to be solved in multi-view video applications, such as free viewpoint television and other three-dimensional video systems. In this paper, by combining with multi-view video coding, a coding-oriented multi-view video color correction method is proposed. We first separate foreground and background in first Group Of Pictures (GOP) by using SKIP coding mode. Then by transferring means and standard deviations in backgrounds, color correction is performed for each frame in GOP, and multi-view video coding is performed and used to renew the backgrounds. Experimental results ances in color correction and multi-view video show the proposed method can obtain better performcoding.展开更多
Distributed video coding (DVC) is a new video coding approach based on Wyner-Ziv theorem. The novel uplink-friendly DVC, which offers low-complexity, low-power consuming, and low-cost video encoding, has aroused mor...Distributed video coding (DVC) is a new video coding approach based on Wyner-Ziv theorem. The novel uplink-friendly DVC, which offers low-complexity, low-power consuming, and low-cost video encoding, has aroused more and more research interests. In this paper a new method based on multiple view geometry is presented for spatial side information generation of uncalibrated video sensor network. Trifocal tensor encapsulates all the geometric relations among three views that are independent of scene structure; it can be computed from image correspondences alone without requiring knowledge of the motion or calibration. Simulation results show that trifocal tensor-based spatial side information improves the rate-distortion performance over motion compensation based interpolation side information by a maximum gap of around 2dB. Then fusion merges the different side information (temporal and spatial) in order to improve the quality of the final one. Simulation results show that the rate-distortion gains about 0.4 dB.展开更多
The trend in video viewing has been evolving beyond simply providing a multi-view option.Recently,a function that allows selection and viewing of a clip from a multi-view service that captures a specific range or obje...The trend in video viewing has been evolving beyond simply providing a multi-view option.Recently,a function that allows selection and viewing of a clip from a multi-view service that captures a specific range or object has been added.In particular,the free-view service is an extended concept of multi-view and provides a freer viewpoint.However,since numerous videos and additional data are required for its construction,all of the clips constituting the content cannot be simultaneously provided.Only certain clips are selected and provided to the user.If the video is not the preferred video,change request is made,and a delay occurs during retransmission from the server.Delays due to frequent re-requests degrade the overall quality of service.For free-view services,selectively transmitting the video according to the user’s desired viewpoint and region of interest within the limited network of available videos is important.In this study,we propose a method of screening and providing the correct video based on objects in the contents.Based on the method of recognizing the object in each clip,we designed a method of setting its priority based on information about the object’s location for each viewpoint.During the transmission and receiving process using this information,the selected video can be rapidly recognized and changed.Herein,we present a service system configuration method and propose video selection examples for free-view services.展开更多
We propose a disparity-constrained retargeting method for stereoscopic 3D video, which simultaneously resizes a binocular video to a new aspect ratio and remaps the depth to the perceptual comfort zone. First, we mode...We propose a disparity-constrained retargeting method for stereoscopic 3D video, which simultaneously resizes a binocular video to a new aspect ratio and remaps the depth to the perceptual comfort zone. First, we model distortion energies to prevent important video contents from deforming. Then, to maintain depth mapping stability, we model disparity variation energies to constraint the disparity range both in spatial and temporal domains. The last component of our method is a non-uniform, pixel-wise warp to the target resolution based on these energy models. Using this method, we can process the original stereoscopic video to generate new, high-perceptual-quality versions at different display resolutions. For evaluation, we conduct a user study; we also discuss the performance of our method.展开更多
Pixel disparity—the offset of corresponding pixels between left and right views—is a crucial parameter in stereoscopic three-dimensional(S3D)video, as it determines the depth perceived by the human visual system(HVS...Pixel disparity—the offset of corresponding pixels between left and right views—is a crucial parameter in stereoscopic three-dimensional(S3D)video, as it determines the depth perceived by the human visual system(HVS). Unsuitable pixel disparity distribution throughout an S3 D video may lead to visual discomfort. We present a unified and extensible stereoscopic video disparity adjustment framework which improves the viewing experience for an S3 D video by keeping the perceived 3D appearance as unchanged as possible while minimizing discomfort. We first analyse disparity and motion attributes of S3 D video in general, then derive a wide-ranging visual discomfort metric from existing perceptual comfort models. An objective function based on this metric is used as the basis of a hierarchical optimisation method to find a disparity mapping function for each input video frame. Warping-based disparity manipulation is then applied to the input video to generate the output video, using the desired disparity mappings as constraints. Our comfort metric takes into account disparity range, motion, and stereoscopic window violation; the framework could easily be extended to use further visual comfort models. We demonstrate the power of our approach using both animated cartoons and real S3 D videos.展开更多
A feature fusion approach is presented to extract the region of interest (ROI) from the stereoscopic video. Based on human vision system (HVS), the depth feature, the color feature and the motion feature are chose...A feature fusion approach is presented to extract the region of interest (ROI) from the stereoscopic video. Based on human vision system (HVS), the depth feature, the color feature and the motion feature are chosen as vision features. The algorithm is shown as follows. Firstly, color saliency is calculated on superpixel scale. Color space distribution of the superpixel and the color difference between the superpixel and background pixel are used to describe color saliency and color salient region is detected. Then, the classic visual background extractor (Vibe) algorithm is improved from the update interval and update region of background model. The update interval is adjusted according to the image content. The update region is determined through non-obvious movement region and background point detection. So the motion region of stereoscopic video is extracted using improved Vibe algorithm. The depth salient region is detected by selecting the region with the highest gray value. Finally, three regions are fused into final ROI. Experiment results show that the proposed method can extract ROI from stereoscopic video effectively. In order to further verify the proposed method, stereoscopic video coding application is also carried out on the joint model (JM) encoder with different bit allocation in RO| and the background region.展开更多
基金Supported by National Natural Science Foundation of China(No.60972054)National High Technology Research and Development Program of China("863"Program,No.2009AA011507)
文摘Asymmetric stereoscopic video coding can take advantage of binocular suppression in human vision by representing one of the two views in lower quality.This paper proposes a bit allocation strategy for asymmetric stereoscopic video coding.In order to improve the accuracy of bit allocation and rate control in the left view,a proportionalintegral-derivative controller is adopted.Meanwhile,to control the quality fluctuation between consecutive frames of the left view,a quality controller is adopted.Besides,a fuzzy controller is proposed to control the variation in quality between the left and right views by comparing the PSNR disparity of two views with a fixed threshold,which is used to quantize the binocular psycho-visual redundancy and adjust the quantization parameter (QP) of the right view correspondingly.The proposed algorithm has been implemented in H.264/AVC video codec,and the experimental results show its effectiveness in rate control while keeping a good quality for the left view,and fewer bits are allocated for the right view so that the overall bit rate is saved by 7.2% at most without the loss of subjective visual quality for stereoscopic video.
基金Project (No. 511568) supported by the European Commissionwithin Framework Program 6 with the acronym 3DTV
文摘The authors propose a novel method for transporting multi-view videos that aims to keep the bandwidth requirements on both end-users and servers as low as possible. The method is based on application layer multicast, where each end point re- ceives only a selected number of views required for rendering video from its current viewpoint at any given time. The set of selected videos changes in real time as the user’s viewpoint changes because of head or eye movements. Techniques for reducing the black-outs during fast viewpoint changes were investigated. The performance of the approach was studied through network experiments.
基金supported by the National Natural Science Foundation of China (60672073)the Program for New Century Excellent Talents in University (NCET-06-0537)+1 种基金the Natural Science Foundation of Ningbo (2008A610016)the K.C.Wong Magna Fund in Ningbo University.
文摘Color inconsistency between views is an important problem to be solved in multi-view video systems. A multi-view video color correction method using dynamic programming is proposed. Three-dimensional histograms are constructed with sequential conditional probability in HSI color space. Then, dynamic programming is used to seek the best color mapping relation with the minimum cost path between target image histogram and source image histogram. Finally, video tracking technique is performed to correct multi-view video. Experimental results show that the proposed method can obtain better subjective and objective performance in color correction.
基金Project supported by the National Natural Science Foundation of China (No. 60772134)the Innovation Foundation of Xidian University,China (No. Chuang 05018)
文摘A novel color compensation method for multi-view video coding (MVC) is proposed, which efficiently exploits the inter-view dependencies between views with the existence of color mismatch caused by the diversity of cameras. A color compensation model is developed in RGB channels and then extended to YCbCr channels for practical use. A modified inter-view reference picture is constructed based on the color compensation model, which is more similar to the coding picture than the original inter-view reference picture. Moreover, the color compensation factors can be derived in both encoder and decoder, therefore no additional data need to be transmitted to the decoder. The experimental results show that the proposed method improves the coding efficiency of MVC and maintains good subjective quality.
基金supported by the National Natural Science Foundation of China (Grant Nos.60832003,60672052,60902085,60972137)the Key Project of Shanghai Municipal Education Commission (Grant No.09ZZ90)+2 种基金the Natural Science Foundation of Shanghai(Grant No.09ZR1412500)the Innovation Foundation of Shanghai University (Grants Nos.10YZ09,SHUCX091061)the Shuguang Plan of Shanghai Education Development Foundation (Grant No.06SG43)
文摘Current multi-view video coding (MVC) reference model in joint video team (JVT) does not provide efficient rate control schemes. This paper presents a rate control algorithm for MVC by improving the quadratic rate-distortion (R-D) model. We reasonably allocate bit-rate among views based on the correlation analysisl The proposed algorithm consists of three levels to control the rate bits more accurately, of which the frame layer allocates bits according to the frame complexity and the temporal activity. Extensive experiments show that the proposed algorithm can control the bit rate efficiently.
基金Project(08Y29-7)supported by the Transportation Science and Research Program of Jiangsu Province,ChinaProject(201103051)supported by the Major Infrastructure Program of the Health Monitoring System Hardware Platform Based on Sensor Network Node,China+1 种基金Project(61100111)supported by the National Natural Science Foundation of ChinaProject(BE2011169)supported by the Scientific and Technical Supporting Program of Jiangsu Province,China
文摘The variable block-size motion estimation(ME) and disparity estimation(DE) are adopted in multi-view video coding(MVC) to achieve high coding efficiency. However, much higher computational complexity is also introduced in coding system, which hinders practical application of MVC. An efficient fast mode decision method using mode complexity is proposed to reduce the computational complexity. In the proposed method, mode complexity is firstly computed by using the spatial, temporal and inter-view correlation between the current macroblock(MB) and its neighboring MBs. Based on the observation that direct mode is highly possible to be the optimal mode, mode complexity is always checked in advance whether it is below a predefined threshold for providing an efficient early termination opportunity. If this early termination condition is not met, three mode types for the MBs are classified according to the value of mode complexity, i.e., simple mode, medium mode and complex mode, to speed up the encoding process by reducing the number of the variable block modes required to be checked. Furthermore, for simple and medium mode region, the rate distortion(RD) cost of mode 16×16 in the temporal prediction direction is compared with that of the disparity prediction direction, to determine in advance whether the optimal prediction direction is in the temporal prediction direction or not, for skipping unnecessary disparity estimation. Experimental results show that the proposed method is able to significantly reduce the computational load by 78.79% and the total bit rate by 0.07% on average, while only incurring a negligible loss of PSNR(about 0.04 d B on average), compared with the full mode decision(FMD) in the reference software of MVC.
基金the National Natural Science Foundation of China (No.60672073, No.60872094)the Program for New Century Excellent Talents in University (NCET-06-0537)+2 种基金the Key Project of Chinese Ministry of Education (No. 206059)Scientific Research Fund of Zhejiang Provincial Education Department (No.20070962)the Natural Science Foundation of Ningbo (No.2008A610016).
文摘Color inconsistency between views is an important problem to be solved in multi-view video applications, such as free viewpoint television and other three-dimensional video systems. In this paper, by combining with multi-view video coding, a coding-oriented multi-view video color correction method is proposed. We first separate foreground and background in first Group Of Pictures (GOP) by using SKIP coding mode. Then by transferring means and standard deviations in backgrounds, color correction is performed for each frame in GOP, and multi-view video coding is performed and used to renew the backgrounds. Experimental results ances in color correction and multi-view video show the proposed method can obtain better performcoding.
文摘Distributed video coding (DVC) is a new video coding approach based on Wyner-Ziv theorem. The novel uplink-friendly DVC, which offers low-complexity, low-power consuming, and low-cost video encoding, has aroused more and more research interests. In this paper a new method based on multiple view geometry is presented for spatial side information generation of uncalibrated video sensor network. Trifocal tensor encapsulates all the geometric relations among three views that are independent of scene structure; it can be computed from image correspondences alone without requiring knowledge of the motion or calibration. Simulation results show that trifocal tensor-based spatial side information improves the rate-distortion performance over motion compensation based interpolation side information by a maximum gap of around 2dB. Then fusion merges the different side information (temporal and spatial) in order to improve the quality of the final one. Simulation results show that the rate-distortion gains about 0.4 dB.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2019R1F1A1061635)by a research grant from Seoul Women’s University(2020-0213).
文摘The trend in video viewing has been evolving beyond simply providing a multi-view option.Recently,a function that allows selection and viewing of a clip from a multi-view service that captures a specific range or object has been added.In particular,the free-view service is an extended concept of multi-view and provides a freer viewpoint.However,since numerous videos and additional data are required for its construction,all of the clips constituting the content cannot be simultaneously provided.Only certain clips are selected and provided to the user.If the video is not the preferred video,change request is made,and a delay occurs during retransmission from the server.Delays due to frequent re-requests degrade the overall quality of service.For free-view services,selectively transmitting the video according to the user’s desired viewpoint and region of interest within the limited network of available videos is important.In this study,we propose a method of screening and providing the correct video based on objects in the contents.Based on the method of recognizing the object in each clip,we designed a method of setting its priority based on information about the object’s location for each viewpoint.During the transmission and receiving process using this information,the selected video can be rapidly recognized and changed.Herein,we present a service system configuration method and propose video selection examples for free-view services.
基金supported by the National Basic Research Program of China under Grant No. 2011CB302206the National Natural Science Foundation of China under Grant Nos. 61272226 and 61272231Beijing Key Laboratory of Networked Multimedia
文摘We propose a disparity-constrained retargeting method for stereoscopic 3D video, which simultaneously resizes a binocular video to a new aspect ratio and remaps the depth to the perceptual comfort zone. First, we model distortion energies to prevent important video contents from deforming. Then, to maintain depth mapping stability, we model disparity variation energies to constraint the disparity range both in spatial and temporal domains. The last component of our method is a non-uniform, pixel-wise warp to the target resolution based on these energy models. Using this method, we can process the original stereoscopic video to generate new, high-perceptual-quality versions at different display resolutions. For evaluation, we conduct a user study; we also discuss the performance of our method.
基金supported by the National Hightech R&D Program of China (Project No. 2013AA013903)the National Natural Science Foundation of China (Project Nos. 61272226 and 61133008)Research Grant of Beijing Higher Institution Engineering Research Center
文摘Pixel disparity—the offset of corresponding pixels between left and right views—is a crucial parameter in stereoscopic three-dimensional(S3D)video, as it determines the depth perceived by the human visual system(HVS). Unsuitable pixel disparity distribution throughout an S3 D video may lead to visual discomfort. We present a unified and extensible stereoscopic video disparity adjustment framework which improves the viewing experience for an S3 D video by keeping the perceived 3D appearance as unchanged as possible while minimizing discomfort. We first analyse disparity and motion attributes of S3 D video in general, then derive a wide-ranging visual discomfort metric from existing perceptual comfort models. An objective function based on this metric is used as the basis of a hierarchical optimisation method to find a disparity mapping function for each input video frame. Warping-based disparity manipulation is then applied to the input video to generate the output video, using the desired disparity mappings as constraints. Our comfort metric takes into account disparity range, motion, and stereoscopic window violation; the framework could easily be extended to use further visual comfort models. We demonstrate the power of our approach using both animated cartoons and real S3 D videos.
基金supported by the National Natural Science Foundation of China (61201236)National Key Technology Support Program (2012BAH01F04)Beijing Key Laboratory of Science and Technology (Z141101004414045)
文摘A feature fusion approach is presented to extract the region of interest (ROI) from the stereoscopic video. Based on human vision system (HVS), the depth feature, the color feature and the motion feature are chosen as vision features. The algorithm is shown as follows. Firstly, color saliency is calculated on superpixel scale. Color space distribution of the superpixel and the color difference between the superpixel and background pixel are used to describe color saliency and color salient region is detected. Then, the classic visual background extractor (Vibe) algorithm is improved from the update interval and update region of background model. The update interval is adjusted according to the image content. The update region is determined through non-obvious movement region and background point detection. So the motion region of stereoscopic video is extracted using improved Vibe algorithm. The depth salient region is detected by selecting the region with the highest gray value. Finally, three regions are fused into final ROI. Experiment results show that the proposed method can extract ROI from stereoscopic video effectively. In order to further verify the proposed method, stereoscopic video coding application is also carried out on the joint model (JM) encoder with different bit allocation in RO| and the background region.