期刊文献+
共找到3,485篇文章
< 1 2 175 >
每页显示 20 50 100
Automatic area estimation of algal blooms in water bodies from UAV images using texture analysis
1
作者 Ajmeria Rahul Gundu Lokesh +2 位作者 Siddhartha Goswami R.N.Ponnalagu Radhika Sudha 《Water Science and Engineering》 EI CAS CSCD 2024年第1期62-71,共10页
Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solu... Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solution for detection and monitoring.Unmanned aerial vehicles(UAVs)have recently emerged as a tool for algal bloom detection,efficiently providing on-demand images at high spatiotemporal resolutions.This study developed an image processing method for algal bloom area estimation from the aerial images(obtained from the internet)captured using UAVs.As a remote sensing method of HAB detection,analysis,and monitoring,a combination of histogram and texture analyses was used to efficiently estimate the area of HABs.Statistical features like entropy(using the Kullback-Leibler method)were emphasized with the aid of a gray-level co-occurrence matrix.The results showed that the orthogonal images demonstrated fewer errors,and the morphological filter best detected algal blooms in real time,with a precision of 80%.This study provided efficient image processing approaches using on-board UAVs for HAB monitoring. 展开更多
关键词 Algal bloom image processing texture analysis Histogram analysis Unmanned aerial vehicles
下载PDF
A new two-step variational model for multiplicative noise removal with applications to texture images
2
作者 ZHANG Long-hui YAO Wen-juan +2 位作者 SHI Sheng-zhu GUO Zhi-chang ZHANG Da-zhi 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第3期486-501,共16页
Multiplicative noise removal problems have attracted much attention in recent years.Unlike additive noise,multiplicative noise destroys almost all information of the original image,especially for texture images.Motiva... Multiplicative noise removal problems have attracted much attention in recent years.Unlike additive noise,multiplicative noise destroys almost all information of the original image,especially for texture images.Motivated by the TV-Stokes model,we propose a new two-step variational model to denoise the texture images corrupted by multiplicative noise with a good geometry explanation in this paper.In the first step,we convert the multiplicative denoising problem into an additive one by the logarithm transform and propagate the isophote directions in the tangential field smoothing.Once the isophote directions are constructed,an image is restored to fit the constructed directions in the second step.The existence and uniqueness of the solution to the variational problems are proved.In these two steps,we use the gradient descent method and construct finite difference schemes to solve the problems.Especially,the augmented Lagrangian method and the fast Fourier transform are adopted to accelerate the calculation.Experimental results show that the proposed model can remove the multiplicative noise efficiently and protect the texture well. 展开更多
关键词 multiplicative noise removal texture images total variation two-step variational method aug-mented Lagrangian method
下载PDF
Robust Machine Learning Technique to Classify COVID-19 Using Fusion of Texture and Vesselness of X-Ray Images
3
作者 Shaik Mahaboob Basha Victor Hugo Cde Albuquerque +3 位作者 Samia Allaoua Chelloug Mohamed Abd Elaziz Shaik Hashmitha Mohisin Suhail Parvaze Pathan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1981-2004,共24页
Manual investigation of chest radiography(CXR)images by physicians is crucial for effective decision-making in COVID-19 diagnosis.However,the high demand during the pandemic necessitates auxiliary help through image a... Manual investigation of chest radiography(CXR)images by physicians is crucial for effective decision-making in COVID-19 diagnosis.However,the high demand during the pandemic necessitates auxiliary help through image analysis and machine learning techniques.This study presents a multi-threshold-based segmentation technique to probe high pixel intensity regions in CXR images of various pathologies,including normal cases.Texture information is extracted using gray co-occurrence matrix(GLCM)-based features,while vessel-like features are obtained using Frangi,Sato,and Meijering filters.Machine learning models employing Decision Tree(DT)and RandomForest(RF)approaches are designed to categorize CXR images into common lung infections,lung opacity(LO),COVID-19,and viral pneumonia(VP).The results demonstrate that the fusion of texture and vesselbased features provides an effective ML model for aiding diagnosis.The ML model validation using performance measures,including an accuracy of approximately 91.8%with an RF-based classifier,supports the usefulness of the feature set and classifier model in categorizing the four different pathologies.Furthermore,the study investigates the importance of the devised features in identifying the underlying pathology and incorporates histogrambased analysis.This analysis reveals varying natural pixel distributions in CXR images belonging to the normal,COVID-19,LO,and VP groups,motivating the incorporation of additional features such as mean,standard deviation,skewness,and percentile based on the filtered images.Notably,the study achieves a considerable improvement in categorizing COVID-19 from LO,with a true positive rate of 97%,further substantiating the effectiveness of the methodology implemented. 展开更多
关键词 Chest radiography(CXR)image COVID-19 CLASSIFIER machine learning random forest texture analysis
下载PDF
Congruent Feature Selection Method to Improve the Efficacy of Machine Learning-Based Classification in Medical Image Processing
4
作者 Mohd Anjum Naoufel Kraiem +2 位作者 Hong Min Ashit Kumar Dutta Yousef Ibrahim Daradkeh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期357-384,共28页
Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp... Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset. 展开更多
关键词 Computer vision feature selection machine learning region detection texture analysis image classification medical images
下载PDF
Topic highlight on texture and color enhancement imaging in gastrointestinal diseases
5
作者 Osamu Toyoshima Toshihiro Nishizawa Keisuke Hata 《World Journal of Gastroenterology》 SCIE CAS 2024年第14期1934-1940,共7页
Olympus Corporation developed texture and color enhancement imaging(TXI)as a novel image-enhancing endoscopic technique.This topic highlights a series of hot-topic articles that investigated the efficacy of TXI for ga... Olympus Corporation developed texture and color enhancement imaging(TXI)as a novel image-enhancing endoscopic technique.This topic highlights a series of hot-topic articles that investigated the efficacy of TXI for gastrointestinal disease identification in the clinical setting.A randomized controlled trial demonstrated improvements in the colorectal adenoma detection rate(ADR)and the mean number of adenomas per procedure(MAP)of TXI compared with those of white-light imaging(WLI)observation(58.7%vs 42.7%,adjusted relative risk 1.35,95%CI:1.17-1.56;1.36 vs 0.89,adjusted incident risk ratio 1.48,95%CI:1.22-1.80,respectively).A cross-over study also showed that the colorectal MAP and ADR in TXI were higher than those in WLI(1.5 vs 1.0,adjusted odds ratio 1.4,95%CI:1.2-1.6;58.2%vs 46.8%,1.5,1.0-2.3,respectively).A randomized controlled trial demonstrated non-inferiority of TXI to narrow-band imaging in the colorectal mean number of adenomas and sessile serrated lesions per procedure(0.29 vs 0.30,difference for non-inferiority-0.01,95%CI:-0.10 to 0.08).A cohort study found that scoring for ulcerative colitis severity using TXI could predict relapse of ulcerative colitis.A cross-sectional study found that TXI improved the gastric cancer detection rate compared to WLI(0.71%vs 0.29%).A cross-sectional study revealed that the sensitivity and accuracy for active Helicobacter pylori gastritis in TXI were higher than those of WLI(69.2%vs 52.5%and 85.3%vs 78.7%,res-pectively).In conclusion,TXI can improve gastrointestinal lesion detection and qualitative diagnosis.Therefore,further studies on the efficacy of TXI in clinical practice are required. 展开更多
关键词 Endoscopy texture and color enhancement imaging White-light imaging Narrow-band imaging Colorectal neoplasm Gastric cancer Adenoma Ulcerative colitis Helicobacter infections Colonoscopy
下载PDF
Application of texture signatures based on multiparameter-magnetic resonance imaging for predicting microvascular invasion in hepatocellular carcinoma:Retrospective study
6
作者 Hai-Yang Nong Yong-Yi Cen +5 位作者 Mi Qin Wen-Qi Qin You-Xiang Xie Lin Li Man-Rong Liu Ke Ding 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第4期1309-1318,共10页
BACKGROUND Despite continuous changes in treatment methods,the survival rate for advanced hepatocellular carcinoma(HCC)patients remains low,highlighting the importance of diagnostic methods for HCC.AIM To explore the ... BACKGROUND Despite continuous changes in treatment methods,the survival rate for advanced hepatocellular carcinoma(HCC)patients remains low,highlighting the importance of diagnostic methods for HCC.AIM To explore the efficacy of texture analysis based on multi-parametric magnetic resonance(MR)imaging(MRI)in predicting microvascular invasion(MVI)in preoperative HCC.METHODS This study included 105 patients with pathologically confirmed HCC,categorized into MVI-positive and MVI-negative groups.We employed Original Data Analysis,Principal Component Analysis,Linear Discriminant Analysis(LDA),and Non-LDA(NDA)for texture analysis using multi-parametric MR images to predict preoperative MVI.The effectiveness of texture analysis was determined using the B11 program of the MaZda4.6 software,with results expressed as the misjudgment rate(MCR).RESULTS Texture analysis using multi-parametric MRI,particularly the MI+PA+F dimensionality reduction method combined with NDA discrimination,demonstrated the most effective prediction of MVI in HCC.Prediction accuracy in the pulse and equilibrium phases was 83.81%.MCRs for the combination of T2-weighted imaging(T2WI),arterial phase,portal venous phase,and equilibrium phase were 22.86%,16.19%,20.95%,and 20.95%,respectively.The area under the curve for predicting MVI positivity was 0.844,with a sensitivity of 77.19%and specificity of 91.67%.CONCLUSION Texture analysis of arterial phase images demonstrated superior predictive efficacy for MVI in HCC compared to T2WI,portal venous,and equilibrium phases.This study provides an objective,non-invasive method for preoperative prediction of MVI,offering a theoretical foundation for the selection of clinical therapy. 展开更多
关键词 Magnetic resonance imaging Hepatocellular carcinoma texture analysis Microvascular invasion
下载PDF
Prediction of different stages of rectal cancer: Texture analysis based on diffusion-weighted images and apparent diffusion coefficient maps 被引量:16
7
作者 Jian-Dong Yin Li-Rong Song +1 位作者 He-Cheng Lu Xu Zheng 《World Journal of Gastroenterology》 SCIE CAS 2020年第17期2082-2096,共15页
BACKGROUND It is evident that an accurate evaluation of T and N stage rectal cancer is essential for treatment planning.It has not been extensively investigated whether texture features derived from diffusion-weighted... BACKGROUND It is evident that an accurate evaluation of T and N stage rectal cancer is essential for treatment planning.It has not been extensively investigated whether texture features derived from diffusion-weighted imaging(DWI)images and apparent diffusion coefficient(ADC)maps are associated with the extent of local invasion(pathological stage T1-2 vs T3-4)and nodal involvement(pathological stage N0 vs N1-2)in rectal cancer.AIM To predict different stages of rectal cancer using texture analysis based on DWI images and ADC maps.METHODS One hundred and fifteen patients with pathologically proven rectal cancer,who underwent preoperative magnetic resonance imaging,including DWI,were enrolled,retrospectively.The ADC measurements(ADCmean,ADCmin,ADCmax)as well as texture features,including the gray level co-occurrence matrix parameters,the gray level run-length matrix parameters and wavelet parameters were calculated based on DWI(b=0 and b=1000)images and the ADC maps.Independent sample t-tests or Mann-Whitney U tests were used for statistical analysis.Multivariate logistic regression analysis was conducted to establish the models.The predictive performance was validated by receiver operating characteristic curve analysis.RESULTS Dissimilarity,sum average,information correlation and run-length nonuniformity from DWIb=0 images,gray level nonuniformity,run percentage and run-length nonuniformity from DWIb=1000 images,and dissimilarity and run percentage from ADC maps were found to be independent predictors of local invasion(stage T3-4).The area under the operating characteristic curve of the model reached 0.793 with a sensitivity of 78.57%and a specificity of 74.19%.Sum average,gray level nonuniformity and the horizontal components of symlet transform(SymletH)from DWIb=0 images,sum average,information correlation,long run low gray level emphasis and SymletH from DWIb=1000 images,and ADCmax,ADCmean and information correlation from ADC maps were identified as independent predictors of nodal involvement.The area under the operating characteristic curve of the model reached 0.802 with a sensitivity of 80.77%and a specificity of 68.25%.CONCLUSION Texture features extracted from DWI images and ADC maps are useful clues for predicting pathological T and N stages in rectal cancer. 展开更多
关键词 RECTAL cancer DIFFUSION WEIGHTED imaging APPARENT DIFFUSION COEFFICIENT texture analysis
下载PDF
Image block feature vectors based on a singular-value information metric and color-texture description 被引量:4
8
作者 王朔中 路兴 +1 位作者 苏胜君 张新鹏 《Journal of Shanghai University(English Edition)》 CAS 2007年第3期205-209,共5页
In this work, image feature vectors are formed for blocks containing sufficient information, which are selected using a singular-value criterion. When the ratio between the first two SVs axe below a given threshold, t... In this work, image feature vectors are formed for blocks containing sufficient information, which are selected using a singular-value criterion. When the ratio between the first two SVs axe below a given threshold, the block is considered informative. A total of 12 features including statistics of brightness, color components and texture measures are used to form intermediate vectors. Principal component analysis is then performed to reduce the dimension to 6 to give the final feature vectors. Relevance of the constructed feature vectors is demonstrated by experiments in which k-means clustering is used to group the vectors hence the blocks. Blocks falling into the same group show similar visual appearances. 展开更多
关键词 image feature COLOR texture content-based image retrieval (CBIR) image hashing
下载PDF
Role of the texture features of images in the diagnosis of solitary pulmonary nodules in different sizes 被引量:4
9
作者 Qian Zhao Chang-Zheng Shi Liang-Ping Luo 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2014年第4期451-458,共8页
Objective: To explore the role of the texture features of images in the diagnosis of solitary pulmonary nodules (SPNs) in different sizes. Materials and methods: A total of 379 patients with pathologically confirm... Objective: To explore the role of the texture features of images in the diagnosis of solitary pulmonary nodules (SPNs) in different sizes. Materials and methods: A total of 379 patients with pathologically confirmed SPNs were enrolled in this study. They were divided into three groups based on the SPN sizes: ≤10, 11-20, and 〉20 mm. Their texture features were segmented and extracted. The differences in the image features between benign and malignant SPNs were compared. The SPNs in these three groups were determined and analyzed with the texture features of images. Results: These 379 SPNs were successfully segmented using the 2D Otsu threshold method and the self-adaptive threshold segmentation method. The texture features of these SPNs were obtained using the method of grey level co-occurrence matrix (GLCM). Of these 379 patients, 120 had benign SPNs and 259 had malignant SPNs. The entropy, contrast, energy, homogeneity, and correlation were 3.5597±0.6470, 0.5384±0.2561, 0.1921±0.1256, 0.8281±0.0604, and 0.8748±0.0740 in the benign SPNs and 3.8007±0.6235, 0.6088±0.2961, 0.1673±0.1070, 0.7980±0.0555, and 0.8550±0.0869 in the malignant SPNs (all P〈0.05). The sensitivity, specificity, and accuracy of the texture features of images were 83.3%, 90.0%, and 86.8%, respectively, for SPNs sized 〈10 mm, and were 86.6%, 88.2%, and 87.1%, respectively, for SPNs sized 11-20 mm and 94.7%, 91.8%, and 93.9%, respectively, for SPNs sized 〉20 mm. Conclusions: The entropy and contrast of malignant pulmonary nodules have been demonstrated to be higher in comparison to those of benign pulmonary nodules, while the energy, homogeneity correlation of malignant pulmonary nodules are lower than those of benign pulmonary nodules. The texture features of images can reflect the tissue features and have high sensitivity, specificity, and accuracy in differentiating SPNs. The sensitivity and accuracy increase for larger SPNs. 展开更多
关键词 Solitary pulmonary nodules (SPNs) DIFFERENTIATION textures image features
下载PDF
Use of digital image analysis combined with fractal theory to determine particle morphology and surface texture of quartz sands 被引量:4
10
作者 Georgia S.Araujo Kátia V.Bicalho Fernando A.Tristao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第6期1131-1139,共9页
The particle morphology and surface texture play a major role in influencing mechanical and hydraulic behaviors of sandy soils. This paper presents the use of digital image analysis combined with fractal theory as a t... The particle morphology and surface texture play a major role in influencing mechanical and hydraulic behaviors of sandy soils. This paper presents the use of digital image analysis combined with fractal theory as a tool to quantify the particle morphology and surface texture of two types of quartz sands widely used in the region of Vitória, Espírito Santo, southeast of Brazil. The two investigated sands are sampled from different locations. The purpose of this paper is to present a simple, straightforward,reliable and reproducible methodology that can identify representative sandy soil texture parameters.The test results of the soil samples of the two sands separated by sieving into six size fractions are presented and discussed. The main advantages of the adopted methodology are its simplicity, reliability of the results, and relatively low cost. The results show that sands from the coastal spit(BS) have a greater degree of roundness and a smoother surface texture than river sands(RS). The values obtained in the test are statistically analyzed, and again it is confirmed that the BS sand has a slightly greater degree of sphericity than that of the RS sand. Moreover, the RS sand with rough surface texture has larger specific surface area values than the similar BS sand, which agree with the obtained roughness fractal dimensions. The consistent experimental results demonstrate that image analysis combined with fractal theory is an accurate and efficient method to quantify the differences in particle morphology and surface texture of quartz sands. 展开更多
关键词 Quartz sands Particle morphology and surface texture image analysis Fractal theory
下载PDF
Edge and texture detection of metal image under high temperature and dynamic solidification condition 被引量:6
11
作者 CHEN Zu-guo LI Yong-gang +2 位作者 CHEN Xiao-fang YANG Chun-hua GUI Wei-hua 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第6期1501-1512,共12页
The zinc casting is a complicated process with high temperature, high dust content and dynamic solidification. To accurately detect the edge and texture of metal image under this condition, a sub-pixel detection based... The zinc casting is a complicated process with high temperature, high dust content and dynamic solidification. To accurately detect the edge and texture of metal image under this condition, a sub-pixel detection based on gradient entropy and adaptive four-order cubic convolution interpolation (GEAF-CCI) algorithm is proposed. This method mainly involves three procedures. Firstly, the gradient image is generated from the grey images by using gradient operator. Then, a dynamic threshold based on the maximum local gradient entropy (DTMLGE) algorithm is applied to distinguishing the edge and texture pixels from gradient images. Finally, the adaptive four-order cubic convolution interpolation (AF-CCI) algorithm is proposed for interpolating calculation of the target edges and textures according to their variation differences in different directions. The experimental result shows that the proposed algorithm can remove the jag and blur of the edges and textures, improve the edge positioning precision and reduce the false or missing detection rate. 展开更多
关键词 edge and texture detection GEAF-CCI algorithm DTMLGE algorithm metal image
下载PDF
An improved fast fractal image compression using spatial texture correlation 被引量:2
12
作者 王兴元 王远星 云娇娇 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第10期228-238,共11页
This paper utilizes a spatial texture correlation and the intelligent classification algorithm (ICA) search strategy to speed up the encoding process and improve the bit rate for fractal image compression. Texture f... This paper utilizes a spatial texture correlation and the intelligent classification algorithm (ICA) search strategy to speed up the encoding process and improve the bit rate for fractal image compression. Texture features is one of the most important properties for the representation of an image. Entropy and maximum entry from co-occurrence matrices are used for representing texture features in an image. For a range block, concerned domain blocks of neighbouring range blocks with similar texture features can be searched. In addition, domain blocks with similar texture features are searched in the ICA search process. Experiments show that in comparison with some typical methods, the proposed algorithm significantly speeds up the encoding process and achieves a higher compression ratio, with a slight diminution in the quality of the reconstructed image; in comparison with a spatial correlation scheme, the proposed scheme spends much less encoding time while the compression ratio and the quality of the reconstructed image are almost the same. 展开更多
关键词 fractal image compression texture features intelligent classification algorithm spatialcorrelation
下载PDF
Adaptive variational models for image decomposition combining staircase reduction and texture extraction 被引量:1
13
作者 Jiang Lingling Yin Haiqing Feng Xiangchu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期254-259,共6页
New models for image decomposition are proposed which separate an image into a cartoon, consisting only of geometric objects, and an oscillatory component, consisting of textures or noise. The proposed models are give... New models for image decomposition are proposed which separate an image into a cartoon, consisting only of geometric objects, and an oscillatory component, consisting of textures or noise. The proposed models are given in a variational formulation with adaptive regularization norms for both the cartoon and texture parts. The adaptive behavior preserves key features such as object boundaries and textures while avoiding staircasing in what should be smooth regions. This decomposition is computed by minimizing a convex functional which depends on the two variables u and v, alternatively in each variable. Experimental results and comparisons to validate the proposed models are presented. 展开更多
关键词 image decomposition total variation minimization bounded variation texture
下载PDF
Analysis of Texture of Froth Image in Coal Flotation 被引量:4
14
作者 路迈西 王凡 +2 位作者 刘晓旻 刘文礼 王勇 《Journal of China University of Mining and Technology》 2001年第2期100-103,共4页
Froth image features of coal flotation have been extracted and studied by neighboring grey level dependence matrix, spatial grey level dependence matrix and grey level histogram. In this paper, a basic algorithm of un... Froth image features of coal flotation have been extracted and studied by neighboring grey level dependence matrix, spatial grey level dependence matrix and grey level histogram. In this paper, a basic algorithm of unsupervised learning pattern classification is presented, and coal flotation froth images are classified by means of self organizing map (SOM). By extracting features from 51 flotation froth images with laboratory column, four types of froth images are classified. The correct rate of SOM cluster is satisfactory. And a good relationship of froth type with average ash content is also observed. 展开更多
关键词 Coal slurry flotation froth image texture artificial neural nets unsupervised learning
下载PDF
Image completion algorithm based on texture synthesis 被引量:1
15
作者 Zhang Hongying Peng Qicong Wu Yadong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期385-391,共7页
A new algorithm is proposed for completing the missing parts caused by the removal of foreground or background elements from an image of natural scenery in a visually plausible way. The major contributions of the prop... A new algorithm is proposed for completing the missing parts caused by the removal of foreground or background elements from an image of natural scenery in a visually plausible way. The major contributions of the proposed algorithm are: (1) for most natural images, there is a strong orientation of texture or color distribution. So a method is introduced to compute the main direction of the texture and complete the image by limiting the search to one direction to carry out image completion quite fast; (2) there exists a synthesis ordering for image completion. The searching order of the patches is defined to ensure the regions with more known information and the structures should be completed before filling in other regions; (3) to improve the visual effect of texture synthesis, an adaptive scheme is presented to determine the size of the template window for capturing the features of various scales. A number of examples are given to demonstrate the effectiveness of the proposed algorithm. 展开更多
关键词 Mage completions image inpainting texture synthesis Object removal.
下载PDF
Assessing Texture of Slub-Yarn Fabric Using Image Analysis 被引量:2
16
作者 卢雨正 高卫东 张星烨 《Journal of Donghua University(English Edition)》 EI CAS 2007年第2期219-221,共3页
The application of digital image processing to the classification of the slub-yarn texture is discussed. Texture of the slub-yarn fabric is analyzed by using the texture analysis techniques. The influence of the slub-... The application of digital image processing to the classification of the slub-yarn texture is discussed. Texture of the slub-yarn fabric is analyzed by using the texture analysis techniques. The influence of the slub-yarn parameters on the fabric texture is discussed. Results indicate that texture of the slub-yarn fabric can be reliably measured using gray level co-occurrence matrix (GLCM) analysis. The four indices of GLCM, the angular second moment, the contrast, the inverse difference moment and the correlation, are sensitive to the change of the slub-yarn parameters, and can be regarded as the major indices for the texture. 展开更多
关键词 slub-yarn fabric image texture gray levelco-occurrence matrix
下载PDF
Effect of MR Field Strength on the Texture Features of Cerebral T2-FLAIR Images: A Pilot Study 被引量:2
17
作者 Xuedan Wang Shiwei Wang +1 位作者 Botao Wang Zhiye Chen 《Chinese Medical Sciences Journal》 CAS CSCD 2020年第3期248-253,共6页
Objective To investigate effect of MR field strength on texture features of cerebral T2 fluid attenuated inversion recovery(T2-FLAIR)images.Methods We acquired cerebral 3 D T2-FLAIR images of thirty patients who were ... Objective To investigate effect of MR field strength on texture features of cerebral T2 fluid attenuated inversion recovery(T2-FLAIR)images.Methods We acquired cerebral 3 D T2-FLAIR images of thirty patients who were diagnosed with ischemic white matter lesion(WML)with MR-1.5 T and MR-3.0 T scanners.Histogram texture features which included mean signal intensity(Mean),Skewness and Kurtosis,and gray level co-occurrence matrix(GLCM)texture features which included angular second moment(ASM),Contrast,Correlation,Inverse difference moment(IDM)and Entropy,of regions of interest located in the area of WML and normal white matter(NWM)were measured by ImageJ software.The texture parameters acquired with MR-1.5 T scanning were compared with MR-3.0 T scanning.Results The Mean of both WML and NWM obtained with MR-1.5 T scanning was significantly lower than that acquired with MR-3.0 T(P<0.001),while Skewness and Kurtosis between MR-1.5 T and MR-3.0 T scanning showed no significant difference(P>0.05).ASM,Correlation and IDM of both WML and NWM acquired with MR-1.5 T revealed significantly lower values than those with MR-3.0 T(P<0.001),while Contrast and Entropy acquired with MR-1.5 T showed significantly higher values than those with MR-3.0 T(P<0.001).Conclusion MR field strength showed no significant effect on histogram textures,while had significant effect on GLCM texture features of cerebral T2-FLAIR images,which indicated that it should be cautious to explain the texture results acquired based on the different MR field strength. 展开更多
关键词 magnetic resonance imaging field strength fluid attenuated inversion recovery white matter texture features
下载PDF
Retrieval of High Resolution Satellite Images Using Texture Features 被引量:1
18
作者 Samia Bouteldja Assia Kourgli 《Journal of Electronic Science and Technology》 CAS 2014年第2期211-215,共5页
In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture ... In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture feature and a block based scheme. The query and database images are divided into equally sized blocks, from which LBP histograms are extracted. The block histograms are then compared by using the Chi-square distance. Experimental results show that the LBP representation provides a powerful tool for high resolution satellite images (HRSI) retrieval. 展开更多
关键词 Content-based image retrieval high resolution satellite imagery local binary pattern texture feature extraction
下载PDF
Color Texture Image Inpainting Using the Non Local CTV Model 被引量:2
19
作者 Jinming Duan Zhenkuan Pan +1 位作者 Wangquan Liu Xue-Cheng Tai 《Journal of Signal and Information Processing》 2013年第3期43-51,共9页
The classical TV (Total Variation) model has been applied to gray texture image denoising and inpainting previously based on the non local operators, but such model can not be directly used to color texture image inpa... The classical TV (Total Variation) model has been applied to gray texture image denoising and inpainting previously based on the non local operators, but such model can not be directly used to color texture image inpainting due to coupling of different image layers in color images. In order to solve the inpainting problem for color texture images effectively, we propose a non local CTV (Color Total Variation) model. Technically, the proposed model is an extension of local TV model for gray images but we take account of the coupling of different layers in color images and make use of concepts of the non-local operators. As the coupling of different layers for color images in the proposed model will in-crease computational complexity, we also design a fast Split Bregman algorithm. Finally, some numerical experiments are conducted to validate the performance of the proposed model and its algorithm. 展开更多
关键词 Color texture images image INPAINTING NL-CTV MODEL TV MODEL The SPLIT Bregman Algorithm
下载PDF
Dual optimization image repair algorithm based on linear structure and optimal texture 被引量:1
20
作者 陈炳权 刘宏立 《Journal of Central South University》 SCIE EI CAS 2014年第6期2315-2323,共9页
The performances of repaired image depend on the local information in the repaired area and the consistency between the repair directions with structural content.Image repair algorithm with texture information perform... The performances of repaired image depend on the local information in the repaired area and the consistency between the repair directions with structural content.Image repair algorithm with texture information performs well in repairing seriously damaged images,but it has bad performances when the images have the abundant structure information.The dual optimization image repair algorithm based on the linear structure and the optimal texture is proposed.The algorithm uses the double-constraint sparse model to reconstruct the missed information in large area in order to improve the clarity of repaired images.After adopting the preference of Criminisi priority,the image repair algorithm of self-similarity characteristics is proposed to improve the fault and fuzzy distortion phenomena in the repaired image.The results show that the proposed algorithm has more clarity in the image texture and structure and better effectiveness,and the peak signal-to-noise ratio of the repaired images by proposed algorithm is superior to that by other algorithms. 展开更多
关键词 image restoration linear structure texture information ITERATION sparse representation
下载PDF
上一页 1 2 175 下一页 到第
使用帮助 返回顶部