Support vector regression (SVR) combined with particle swarm optimization for its parameter optimization is employed to establish a model for predicting the Henry constants of multi-walled carbon nanotubes (MWNTs)...Support vector regression (SVR) combined with particle swarm optimization for its parameter optimization is employed to establish a model for predicting the Henry constants of multi-walled carbon nanotubes (MWNTs) for adsorption of volatile organic compounds (VOCs). The prediction performance of SVR is compared with those of the model of theoretical linear salvation energy relationship (TLSER). By using leave-one-out cross validation of SVR test Henry constants for adsorption of 35 VOCs on MWNTs, the root mean square error is 0.080, the mean absolute percentage error is only 1.19~, and the correlation coefficient (R2) is as high as 0.997. Compared with the results of the TLSER model, it is shown that the estimated errors by SVR are ali smaller than those achieved by TLSER. It reveals that the generalization ability of SVR is superior to that of the TLSER model Meanwhile, multifactor analysis is adopted for investigation of the influences of each molecular structure descriptor on the Henry constants. According to the TLSER model, the adsorption mechanism of adsorption of carbon nanotubes of VOCs is mainly a result of van der Waals and interactions of hydrogen bonds. These can provide the theoretical support for the application of carbon nanotube adsorption of VOCs and can make up for the lack of experimental data.展开更多
From the chemical catalysis viewpoint,the excellent performance of CNTs in adsorption-activation of H2 and in promoting spillover of adsorbed H-species is very attractive,in addition to their nanosize channels,sp2-C c...From the chemical catalysis viewpoint,the excellent performance of CNTs in adsorption-activation of H2 and in promoting spillover of adsorbed H-species is very attractive,in addition to their nanosize channels,sp2-C constructed surfaces,and high thermal/electrical conductivity.This review examines some recent progresses of CNTs as a novel support or promoter of catalysts for certain hydrogenation or dehydrogenation reactions,e.g.,hydrogenation-conversion of syngas to yield alcohols and decomposition or steam-reforming of methanol to generate H2,mainly based on recent work carried out in our laboratory.展开更多
基金Supported by the Innovative Talent Funds for Project 985 under Grant No WLYJSBJRCTD201102the Fundamental Research Funds for the Central Universities under Grant No CQDXWL-2013-014+1 种基金the Natural Science Foundation of Chongqing under Grant No CSTC2006BB5240the Program for New Century Excellent Talents in Universities of China under Grant No NCET-07-0903
文摘Support vector regression (SVR) combined with particle swarm optimization for its parameter optimization is employed to establish a model for predicting the Henry constants of multi-walled carbon nanotubes (MWNTs) for adsorption of volatile organic compounds (VOCs). The prediction performance of SVR is compared with those of the model of theoretical linear salvation energy relationship (TLSER). By using leave-one-out cross validation of SVR test Henry constants for adsorption of 35 VOCs on MWNTs, the root mean square error is 0.080, the mean absolute percentage error is only 1.19~, and the correlation coefficient (R2) is as high as 0.997. Compared with the results of the TLSER model, it is shown that the estimated errors by SVR are ali smaller than those achieved by TLSER. It reveals that the generalization ability of SVR is superior to that of the TLSER model Meanwhile, multifactor analysis is adopted for investigation of the influences of each molecular structure descriptor on the Henry constants. According to the TLSER model, the adsorption mechanism of adsorption of carbon nanotubes of VOCs is mainly a result of van der Waals and interactions of hydrogen bonds. These can provide the theoretical support for the application of carbon nanotube adsorption of VOCs and can make up for the lack of experimental data.
基金supported by the National Basic Research Program of China(2011CBA00508)the National Natural Science Foundation of China(20923004)the Program for Changjiang Scholars and Innovative Research Team in University(IRT1036)
文摘From the chemical catalysis viewpoint,the excellent performance of CNTs in adsorption-activation of H2 and in promoting spillover of adsorbed H-species is very attractive,in addition to their nanosize channels,sp2-C constructed surfaces,and high thermal/electrical conductivity.This review examines some recent progresses of CNTs as a novel support or promoter of catalysts for certain hydrogenation or dehydrogenation reactions,e.g.,hydrogenation-conversion of syngas to yield alcohols and decomposition or steam-reforming of methanol to generate H2,mainly based on recent work carried out in our laboratory.