The optimization of velocity field is the core issue in reservoir seismic pressure prediction. For a long time, the seismic processing velocity analysis method has been used in the establishment of pressure prediction...The optimization of velocity field is the core issue in reservoir seismic pressure prediction. For a long time, the seismic processing velocity analysis method has been used in the establishment of pressure prediction velocity field, which has a long research period and low resolution and restricts the accuracy of seismic pressure prediction;This paper proposed for the first time the use of machine learning algorithms, based on the feasibility analysis of wellbore logging pressure prediction, to integrate the CVI velocity inversion field, velocity sensitive post stack attribute field, and AVO P-wave and S-wave velocity reflectivity to obtain high-precision seismic P and S wave velocities. On this basis, high-resolution formation pore pressure and other parameters prediction based on multi waves is carried out. The pressure prediction accuracy is improved by more than 50% compared to the P-wave resolution of pore pressure prediction using only root mean square velocity. Practice has proven that the research method has certain reference significance for reservoir pore pressure prediction.展开更多
Traditional AVO forward modeling only considers the impact of reflection coefficients at the interface on seismic wave field amplitude and ignores various propagation effects. Introducing wave propagation effects incl...Traditional AVO forward modeling only considers the impact of reflection coefficients at the interface on seismic wave field amplitude and ignores various propagation effects. Introducing wave propagation effects including geometric spreading, transmission loss, attenuation into seismic wave propagation, multi-wave amplitude-preserved AVO forward modeling for horizontally layered media based on ray theory is proposed in this paper. We derived the multi-wave geometric spreading correction formulas for horizontally layered media in order to describe the geometric spreading effect of multi-wave propagation. Introducing the complex traveltime directly, we built the relationship between complex traveltime and quality factor without the help of complex velocity to describe the attenuation of viscoelastic media. Multi-wave transmission coefficients, obtained by solving the Zoeppritz equations directly, is used to describe the transmission loss. Numerical results show that the effects of geometric spreading, attenuation, and transmission loss on multi-wave amplitude varies with offset and multi-wave amplitude-preserved AVO forward modeling should consider the reconstructive effect of wave propagation on reflection amplitude.展开更多
Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (...Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (CO_(2)) injection and storage, shallow surface prospecting and deep-earth structure description. The change in in-situ stress induced by hydrocarbon production and localized tectonic movements causes the changes in rock mechanic properties (e.g. wave velocities, density and anisotropy) and further causes the changes in seismic amplitudes, phases and travel times. In this study, the nonlinear elasticity theory that regards the rock skeleton (solid phase) and pore fluid as an effective whole is used to characterize the effect of horizontal principal stress on rock overall elastic properties and the stress-dependent anisotropy parameters are therefore formulated. Then the approximate P-wave, SV-wave and SH-wave angle-dependent reflection coefficient equations for the horizontal-stress-induced anisotropic media are proposed. It is shown that, on the different reflectors, the stress-induced relative changes in reflectivities (i.e., relative difference) of elastic parameters (i.e., P- and S-wave velocities and density) are much less than the changes in contrasts of anisotropy parameters. Therefore, the effects of stress change on the reflectivities of three elastic parameters are reasonably neglected to further propose an AVO inversion approach incorporating P-, SH- and SV-wave information to estimate the change in horizontal principal stress from the corresponding time-lapse seismic data. Compared with the existing methods, our method eliminates the need for man-made rock-physical or fitting parameters, providing more stable predictive power. 1D test illustrates that the estimated result from time-lapse P-wave reflection data shows the most reasonable agreement with the real model, while the estimated result from SH-wave reflection data shows the largest bias. 2D test illustrates the feasibility of the proposed inversion method for estimating the change in horizontal stress from P-wave time-lapse seismic data.展开更多
The study involved the evaluation of the hydrocarbon potential of FORMAT Field, coastal swamp depobelt Niger delta, Nigeria to obtain a more efficient reservoir characterization and fluid properties identification. De...The study involved the evaluation of the hydrocarbon potential of FORMAT Field, coastal swamp depobelt Niger delta, Nigeria to obtain a more efficient reservoir characterization and fluid properties identification. Despite advances in seismic data interpretation using traditional 3D seismic data interpretation, obtaining adequate reservoir characteristics at the finest level had proved very challenging with often disappointing results. A method that integrates the amplitude variation with offfset (AVO) analysis is hereby proposed to better illuminate the reservoir. The Hampson Russell 10.3 was used to integrate and study the available seismic and well data. The reservoir of interest was delineated using the available suite of petrophysical data. This was marked by low gamma ray, high resistivity, and low acoustic impedance between a true subsea vertical depth (TVDss) range of 10,350 - 10,450 ft. The AVO fluid substitution yielded a decrease in the density values of pure gas (2.3 - 1.6 g/cc), pure oil (2.3 - 1.8 g/cc) while the Poisson pure brine increased (2.3 to 2.8 g/cc). Result from FORMAT 26 plots yielded a negative intercept and negative gradient at the top and a positive intercept and positive gradient at the Base which conforms to Class III AVO anomaly. FORMAT 30 plots yielded a negative intercept and positive gradient at the top and a positive intercept and negative gradient at the Base which conforms to class IV AVO anomaly. AVO attribute volume slices decreased in the Poisson ratio (0.96 to - 1.0) indicating that the reservoir contains hydrocarbon. The s-wave reflectivity and the product of the intercept and gradient further clarified that there was a Class 3 gas sand in the reservoir and the possibility of a Class 4 gas sand anomaly in that same reservoir.展开更多
In the process of accurate interpretation of multi-wave seismic data,we wanted to solve the problem of multi-wave information recognition.Based on techniques of elastic wave forwarding,targeting the geological model o...In the process of accurate interpretation of multi-wave seismic data,we wanted to solve the problem of multi-wave information recognition.Based on techniques of elastic wave forwarding,targeting the geological model of a reservoir of an oil field exploration area,we used a high-order staggered-grid difference technology to simulate many shots of seismic records of nonzero offset shots,implemented multi-wave seismic data processing to acquire the CMP of P waves and converted waves,NMO traces of CCP pre stacks,including AVA information and superposition profiles.Based on the AVA calculation of the model,the layer parameters of the model and the forwarding wave field relations of the P-S wave,we also compared and studied the correspondence between P waves and converted waves.The results of our analysis show that the results from simulation and from the AVO analysis are consistent.Significant wave field differences between P waves and converted waves in the same reservoir were found,which are helpful in recognizing and interpreting the multi-wave information in this area.We made use of the multi-wave data to provide the important guidelines for reservoir prediction.展开更多
The phase change of CO_(2) has a significant bearing on the siting, injection, and monitoring of storage. The phase state of CO_(2) is closely related to pressure. In the process of seismic exploration, the informatio...The phase change of CO_(2) has a significant bearing on the siting, injection, and monitoring of storage. The phase state of CO_(2) is closely related to pressure. In the process of seismic exploration, the information of formation pressure can be response in the seismic data. Therefore, it is possible to monitor the formation pressure using time-lapse seismic method. Apart from formation pressure, the information of porosity and CO_(2) saturation can be reflected in the seismic data. Here, based on the actual situation of the work area, a rockphysical model is proposed to address the feasibility of time-lapse seismic monitoring during CO_(2) storage in the anisotropic formation. The model takes into account the formation pressure, variety minerals composition, fracture, fluid inhomogeneous distribution, and anisotropy caused by horizontal layering of rock layers(or oriented alignment of minerals). From the proposed rockphysical model and the well-logging, cores and geological data at the target layer, the variation of P-wave and S-wave velocity with formation pressure after CO_(2) injection is calculated. And so are the effects of porosity and CO_(2) saturation. Finally, from anisotropic exact reflection coefficient equation, the reflection coefficients under different formation pressures are calculated. It is proved that the reflection coefficient varies with pressure. Compared with CO_(2) saturation, the pressure has a greater effect on the reflection coefficient. Through the convolution model, the seismic record is calculated. The seismic record shows the difference with different formation pressure. At present, in the marine CO_(2) sequestration monitoring domain, there is no study involving the effect of formation pressure changes on seismic records in seafloor anisotropic formation. This study can provide a basis for the inversion of reservoir parameters in anisotropic seafloor CO_(2) reservoirs.展开更多
塔河油田奥陶系油气藏储层非均质性极强,烃源岩长期生排烃、多期充注成藏及混合改造,导致油气性质变化大,给流体识别带来巨大挑战。通过模型正演,分析缝洞型储层厚度、孔隙度、含流体性质对AVO特征的影响,明确气藏、轻质油藏、重质油藏...塔河油田奥陶系油气藏储层非均质性极强,烃源岩长期生排烃、多期充注成藏及混合改造,导致油气性质变化大,给流体识别带来巨大挑战。通过模型正演,分析缝洞型储层厚度、孔隙度、含流体性质对AVO特征的影响,明确气藏、轻质油藏、重质油藏三种不同类型油气藏的AVO特征及敏感参数;在此基础上,开展叠前反演,获得地下不同流体纵波阻抗及纵横波速度比特征,然后基于实际测井数据,建立三种不同类型油气藏岩石物理量版,在岩石物理量版指导下,利用双参数进行流体概率分析,获得缝洞储层流体定量识别结果。对塔河A区(气藏)、B区(轻质油藏)和C区(重质油藏),各50 km 2三维地震资料开展基于叠前AVO反演的流体识别应用研究,将识别结果用于盲井检验,气藏识别符合率为80%,轻质油藏符合率为76%,重质油藏符合率为72%。研究结果为塔河碳酸盐岩储层流体识别提供了参考依据。展开更多
We are concerned with the stability of steady multi-wave configurations for the full Euler equations of compressible fluid flow. In this paper, we focus on the stability of steady four-wave configurations that are the...We are concerned with the stability of steady multi-wave configurations for the full Euler equations of compressible fluid flow. In this paper, we focus on the stability of steady four-wave configurations that are the solutions of the Riemann problem in the flow direction, consisting of two shocks, one vortex sheet, and one entropy wave, which is one of the core multi-wave configurations for the two-dimensional Euler equations. It is proved that such steady four-wave configurations in supersonic flow are stable in structure globally, even under the BV perturbation of the incoming flow in the flow direction. In order to achieve this, we first formulate the problem as the Cauchy problem (initial value problem) in the flow direction, and then develop a modified Glimm difference scheme and identify a Glimm-type functional to obtain the required BV estimates by tracing the interactions not only between the strong shocks and weak waves, but also between the strong vortex sheet/entropy wave and weak waves. The key feature of the Euler equations is that the reflection coefficient is always less than 1, when a weak wave of different family interacts with the strong vortex sheet/entropy wave or the shock wave, which is crucial to guarantee that the Glimm functional is decreasing. Then these estimates are employed to establish the convergence of the approximate solutions to a global entropy solution, close to the background solution of steady four-wave configuration.展开更多
The main problems in seismic attribute technology are the redundancy of data and the uncertainty of attributes, and these problems become much more serious in multi-wave seismic exploration. Data redundancy will incre...The main problems in seismic attribute technology are the redundancy of data and the uncertainty of attributes, and these problems become much more serious in multi-wave seismic exploration. Data redundancy will increase the burden on interpreters, occupy large computer memory, take much more computing time, conceal the effective information, and especially cause the "curse of dimension". Uncertainty of attributes will reduce the accuracy of rebuilding the relationship between attributes and geological significance. In order to solve these problems, we study methods of principal component analysis (PCA), independent component analysis (ICA) for attribute optimization and support vector machine (SVM) for reservoir prediction. We propose a flow chart of multi-wave seismic attribute process and further apply it to multi-wave seismic reservoir prediction. The processing results of real seismic data demonstrate that reservoir prediction based on combination of PP- and PS-wave attributes, compared with that based on traditional PP-wave attributes, can improve the prediction accuracy.展开更多
To overcome the inherent limits of traditional single wave imaging for nondestructive testing,the multi-wave focusing and imaging method is thoroughly studied.This method makes the compressional waves and shear waves ...To overcome the inherent limits of traditional single wave imaging for nondestructive testing,the multi-wave focusing and imaging method is thoroughly studied.This method makes the compressional waves and shear waves focused in both emission and reception processes,which strengthens the focusing energy and improves the signal-to-noise ratio of received signals.A numerical model is developed to study the characteristics of a multi-wave focusing field.It is shown that the element width approaching 0.8 wavelengths of shear waves can keep a balance between the radiation energy of two waves,which can achieve a desirable multi-wave focusing performance.And an experiment using different imaging methods for a linear phased array is performed.It can be concluded that due to the combination of the propagation and reflection characteristics of two waves,the multi-wave focusing and imaging method can significantly improve the imaging distinguishability of defects and expand the available sweeping range to a sector of-650 to 65°.展开更多
文摘The optimization of velocity field is the core issue in reservoir seismic pressure prediction. For a long time, the seismic processing velocity analysis method has been used in the establishment of pressure prediction velocity field, which has a long research period and low resolution and restricts the accuracy of seismic pressure prediction;This paper proposed for the first time the use of machine learning algorithms, based on the feasibility analysis of wellbore logging pressure prediction, to integrate the CVI velocity inversion field, velocity sensitive post stack attribute field, and AVO P-wave and S-wave velocity reflectivity to obtain high-precision seismic P and S wave velocities. On this basis, high-resolution formation pore pressure and other parameters prediction based on multi waves is carried out. The pressure prediction accuracy is improved by more than 50% compared to the P-wave resolution of pore pressure prediction using only root mean square velocity. Practice has proven that the research method has certain reference significance for reservoir pore pressure prediction.
基金sponsored by the National Natural Science Foundation of China (Grant No. 41074098)the National Basic Research Program of China (973 Program) (Grant No. 2007CB209606)
文摘Traditional AVO forward modeling only considers the impact of reflection coefficients at the interface on seismic wave field amplitude and ignores various propagation effects. Introducing wave propagation effects including geometric spreading, transmission loss, attenuation into seismic wave propagation, multi-wave amplitude-preserved AVO forward modeling for horizontally layered media based on ray theory is proposed in this paper. We derived the multi-wave geometric spreading correction formulas for horizontally layered media in order to describe the geometric spreading effect of multi-wave propagation. Introducing the complex traveltime directly, we built the relationship between complex traveltime and quality factor without the help of complex velocity to describe the attenuation of viscoelastic media. Multi-wave transmission coefficients, obtained by solving the Zoeppritz equations directly, is used to describe the transmission loss. Numerical results show that the effects of geometric spreading, attenuation, and transmission loss on multi-wave amplitude varies with offset and multi-wave amplitude-preserved AVO forward modeling should consider the reconstructive effect of wave propagation on reflection amplitude.
基金National Natural Science Foundation of China(42174139,41974119,42030103)Laoshan Laboratory Science and Technology Innovation Program(LSKJ202203406)Science Foundation from Innovation and Technology Support Program for Young Scientists in Colleges of Shandong Province and Ministry of Science and Technology of China(2019RA2136).
文摘Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (CO_(2)) injection and storage, shallow surface prospecting and deep-earth structure description. The change in in-situ stress induced by hydrocarbon production and localized tectonic movements causes the changes in rock mechanic properties (e.g. wave velocities, density and anisotropy) and further causes the changes in seismic amplitudes, phases and travel times. In this study, the nonlinear elasticity theory that regards the rock skeleton (solid phase) and pore fluid as an effective whole is used to characterize the effect of horizontal principal stress on rock overall elastic properties and the stress-dependent anisotropy parameters are therefore formulated. Then the approximate P-wave, SV-wave and SH-wave angle-dependent reflection coefficient equations for the horizontal-stress-induced anisotropic media are proposed. It is shown that, on the different reflectors, the stress-induced relative changes in reflectivities (i.e., relative difference) of elastic parameters (i.e., P- and S-wave velocities and density) are much less than the changes in contrasts of anisotropy parameters. Therefore, the effects of stress change on the reflectivities of three elastic parameters are reasonably neglected to further propose an AVO inversion approach incorporating P-, SH- and SV-wave information to estimate the change in horizontal principal stress from the corresponding time-lapse seismic data. Compared with the existing methods, our method eliminates the need for man-made rock-physical or fitting parameters, providing more stable predictive power. 1D test illustrates that the estimated result from time-lapse P-wave reflection data shows the most reasonable agreement with the real model, while the estimated result from SH-wave reflection data shows the largest bias. 2D test illustrates the feasibility of the proposed inversion method for estimating the change in horizontal stress from P-wave time-lapse seismic data.
文摘The study involved the evaluation of the hydrocarbon potential of FORMAT Field, coastal swamp depobelt Niger delta, Nigeria to obtain a more efficient reservoir characterization and fluid properties identification. Despite advances in seismic data interpretation using traditional 3D seismic data interpretation, obtaining adequate reservoir characteristics at the finest level had proved very challenging with often disappointing results. A method that integrates the amplitude variation with offfset (AVO) analysis is hereby proposed to better illuminate the reservoir. The Hampson Russell 10.3 was used to integrate and study the available seismic and well data. The reservoir of interest was delineated using the available suite of petrophysical data. This was marked by low gamma ray, high resistivity, and low acoustic impedance between a true subsea vertical depth (TVDss) range of 10,350 - 10,450 ft. The AVO fluid substitution yielded a decrease in the density values of pure gas (2.3 - 1.6 g/cc), pure oil (2.3 - 1.8 g/cc) while the Poisson pure brine increased (2.3 to 2.8 g/cc). Result from FORMAT 26 plots yielded a negative intercept and negative gradient at the top and a positive intercept and positive gradient at the Base which conforms to Class III AVO anomaly. FORMAT 30 plots yielded a negative intercept and positive gradient at the top and a positive intercept and negative gradient at the Base which conforms to class IV AVO anomaly. AVO attribute volume slices decreased in the Poisson ratio (0.96 to - 1.0) indicating that the reservoir contains hydrocarbon. The s-wave reflectivity and the product of the intercept and gradient further clarified that there was a Class 3 gas sand in the reservoir and the possibility of a Class 4 gas sand anomaly in that same reservoir.
基金the Doctor Research Fund for Universities of China (No.20070616004)the National High Technology Research and Development Program of China (No.2007AA060505)
文摘In the process of accurate interpretation of multi-wave seismic data,we wanted to solve the problem of multi-wave information recognition.Based on techniques of elastic wave forwarding,targeting the geological model of a reservoir of an oil field exploration area,we used a high-order staggered-grid difference technology to simulate many shots of seismic records of nonzero offset shots,implemented multi-wave seismic data processing to acquire the CMP of P waves and converted waves,NMO traces of CCP pre stacks,including AVA information and superposition profiles.Based on the AVA calculation of the model,the layer parameters of the model and the forwarding wave field relations of the P-S wave,we also compared and studied the correspondence between P waves and converted waves.The results of our analysis show that the results from simulation and from the AVO analysis are consistent.Significant wave field differences between P waves and converted waves in the same reservoir were found,which are helpful in recognizing and interpreting the multi-wave information in this area.We made use of the multi-wave data to provide the important guidelines for reservoir prediction.
文摘The phase change of CO_(2) has a significant bearing on the siting, injection, and monitoring of storage. The phase state of CO_(2) is closely related to pressure. In the process of seismic exploration, the information of formation pressure can be response in the seismic data. Therefore, it is possible to monitor the formation pressure using time-lapse seismic method. Apart from formation pressure, the information of porosity and CO_(2) saturation can be reflected in the seismic data. Here, based on the actual situation of the work area, a rockphysical model is proposed to address the feasibility of time-lapse seismic monitoring during CO_(2) storage in the anisotropic formation. The model takes into account the formation pressure, variety minerals composition, fracture, fluid inhomogeneous distribution, and anisotropy caused by horizontal layering of rock layers(or oriented alignment of minerals). From the proposed rockphysical model and the well-logging, cores and geological data at the target layer, the variation of P-wave and S-wave velocity with formation pressure after CO_(2) injection is calculated. And so are the effects of porosity and CO_(2) saturation. Finally, from anisotropic exact reflection coefficient equation, the reflection coefficients under different formation pressures are calculated. It is proved that the reflection coefficient varies with pressure. Compared with CO_(2) saturation, the pressure has a greater effect on the reflection coefficient. Through the convolution model, the seismic record is calculated. The seismic record shows the difference with different formation pressure. At present, in the marine CO_(2) sequestration monitoring domain, there is no study involving the effect of formation pressure changes on seismic records in seafloor anisotropic formation. This study can provide a basis for the inversion of reservoir parameters in anisotropic seafloor CO_(2) reservoirs.
文摘塔河油田奥陶系油气藏储层非均质性极强,烃源岩长期生排烃、多期充注成藏及混合改造,导致油气性质变化大,给流体识别带来巨大挑战。通过模型正演,分析缝洞型储层厚度、孔隙度、含流体性质对AVO特征的影响,明确气藏、轻质油藏、重质油藏三种不同类型油气藏的AVO特征及敏感参数;在此基础上,开展叠前反演,获得地下不同流体纵波阻抗及纵横波速度比特征,然后基于实际测井数据,建立三种不同类型油气藏岩石物理量版,在岩石物理量版指导下,利用双参数进行流体概率分析,获得缝洞储层流体定量识别结果。对塔河A区(气藏)、B区(轻质油藏)和C区(重质油藏),各50 km 2三维地震资料开展基于叠前AVO反演的流体识别应用研究,将识别结果用于盲井检验,气藏识别符合率为80%,轻质油藏符合率为76%,重质油藏符合率为72%。研究结果为塔河碳酸盐岩储层流体识别提供了参考依据。
基金supported in part by the UK Engineering and Physical Sciences Research Council Award EP/E035027/1 and EP/L015811/1
文摘We are concerned with the stability of steady multi-wave configurations for the full Euler equations of compressible fluid flow. In this paper, we focus on the stability of steady four-wave configurations that are the solutions of the Riemann problem in the flow direction, consisting of two shocks, one vortex sheet, and one entropy wave, which is one of the core multi-wave configurations for the two-dimensional Euler equations. It is proved that such steady four-wave configurations in supersonic flow are stable in structure globally, even under the BV perturbation of the incoming flow in the flow direction. In order to achieve this, we first formulate the problem as the Cauchy problem (initial value problem) in the flow direction, and then develop a modified Glimm difference scheme and identify a Glimm-type functional to obtain the required BV estimates by tracing the interactions not only between the strong shocks and weak waves, but also between the strong vortex sheet/entropy wave and weak waves. The key feature of the Euler equations is that the reflection coefficient is always less than 1, when a weak wave of different family interacts with the strong vortex sheet/entropy wave or the shock wave, which is crucial to guarantee that the Glimm functional is decreasing. Then these estimates are employed to establish the convergence of the approximate solutions to a global entropy solution, close to the background solution of steady four-wave configuration.
基金supported by China Important National Science & Technology Specific Projects (No.2011ZX05019-008)National Natural Science Foundation of China (No.40839901)
文摘The main problems in seismic attribute technology are the redundancy of data and the uncertainty of attributes, and these problems become much more serious in multi-wave seismic exploration. Data redundancy will increase the burden on interpreters, occupy large computer memory, take much more computing time, conceal the effective information, and especially cause the "curse of dimension". Uncertainty of attributes will reduce the accuracy of rebuilding the relationship between attributes and geological significance. In order to solve these problems, we study methods of principal component analysis (PCA), independent component analysis (ICA) for attribute optimization and support vector machine (SVM) for reservoir prediction. We propose a flow chart of multi-wave seismic attribute process and further apply it to multi-wave seismic reservoir prediction. The processing results of real seismic data demonstrate that reservoir prediction based on combination of PP- and PS-wave attributes, compared with that based on traditional PP-wave attributes, can improve the prediction accuracy.
基金the National Natural Science Foundation of China(Grant No.11774377)。
文摘To overcome the inherent limits of traditional single wave imaging for nondestructive testing,the multi-wave focusing and imaging method is thoroughly studied.This method makes the compressional waves and shear waves focused in both emission and reception processes,which strengthens the focusing energy and improves the signal-to-noise ratio of received signals.A numerical model is developed to study the characteristics of a multi-wave focusing field.It is shown that the element width approaching 0.8 wavelengths of shear waves can keep a balance between the radiation energy of two waves,which can achieve a desirable multi-wave focusing performance.And an experiment using different imaging methods for a linear phased array is performed.It can be concluded that due to the combination of the propagation and reflection characteristics of two waves,the multi-wave focusing and imaging method can significantly improve the imaging distinguishability of defects and expand the available sweeping range to a sector of-650 to 65°.