Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized charact...Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized characteristics of mining slopes,this study introduces a new method that fuses model data from Unmanned aerial vehicles(UAV)tilt photogrammetry and 3D laser scanning through a data alignment algorithm based on control points.First,the mini batch K-Medoids algorithm is utilized to cluster the point cloud data from ground 3D laser scanning.Then,the elbow rule is applied to determine the optimal cluster number(K0),and the feature points are extracted.Next,the nearest neighbor point algorithm is employed to match the feature points obtained from UAV tilt photogrammetry,and the internal point coordinates are adjusted through the distanceweighted average to construct a 3D model.Finally,by integrating an engineering case study,the K0 value is determined to be 8,with a matching accuracy between the two model datasets ranging from 0.0669 to 1.0373 mm.Therefore,compared with the modeling method utilizing K-medoids clustering algorithm,the new modeling method significantly enhances the computational efficiency,the accuracy of selecting the optimal number of feature points in 3D laser scanning,and the precision of the 3D model derived from UAV tilt photogrammetry.This method provides a research foundation for constructing mine slope model.展开更多
The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual ...The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual loads in the research on parameter estimation of valve-controlled cylinder system.Despite the actual load information contained in the operating data of the control valve,its acquisition remains challenging.This paper proposes a method that fuses bench test and operating data for parameter estimation to address the aforementioned problems.The proposed method is based on Bayesian theory,and its core is a pool fusion of prior information from bench test and operating data.Firstly,a system model is established,and the parameters in the model are analysed.Secondly,the bench and operating data of the system are collected.Then,the model parameters and weight coefficients are estimated using the data fusion method.Finally,the estimated effects of the data fusion method,Bayesian method,and particle swarm optimisation(PSO)algorithm on system model parameters are compared.The research shows that the weight coefficient represents the contribution of different prior information to the parameter estimation result.The effect of parameter estimation based on the data fusion method is better than that of the Bayesian method and the PSO algorithm.Increasing load complexity leads to a decrease in model accuracy,highlighting the crucial role of the data fusion method in parameter estimation studies.展开更多
Human posture estimation is a prominent research topic in the fields of human-com-puter interaction,motion recognition,and other intelligent applications.However,achieving highaccuracy in key point localization,which ...Human posture estimation is a prominent research topic in the fields of human-com-puter interaction,motion recognition,and other intelligent applications.However,achieving highaccuracy in key point localization,which is crucial for intelligent applications,contradicts the lowdetection accuracy of human posture detection models in practical scenarios.To address this issue,a human pose estimation network called AT-HRNet has been proposed,which combines convolu-tional self-attention and cross-dimensional feature transformation.AT-HRNet captures significantfeature information from various regions in an adaptive manner,aggregating them through convolu-tional operations within the local receptive domain.The residual structures TripNeck and Trip-Block of the high-resolution network are designed to further refine the key point locations,wherethe attention weight is adjusted by a cross-dimensional interaction to obtain more features.To vali-date the effectiveness of this network,AT-HRNet was evaluated using the COCO2017 dataset.Theresults show that AT-HRNet outperforms HRNet by improving 3.2%in mAP,4.0%in AP75,and3.9%in AP^(M).This suggests that AT-HRNet can offer more beneficial solutions for human posture estimation.展开更多
Aiming to ensure the consistency of quality control of Traditional Chinese Medicines(TCMs),a combination method of high-performance liquid chromatography(HPLC),ultraviolet(UV),electrochemical(EC)was developed in this ...Aiming to ensure the consistency of quality control of Traditional Chinese Medicines(TCMs),a combination method of high-performance liquid chromatography(HPLC),ultraviolet(UV),electrochemical(EC)was developed in this study to comprehensively evaluate the quality of Antiviral Mixture(AM),and Comprehensive Linear Quantification Fingerprint Method(CLQFM)was used to process the data.Quantitative analysis of three active substances in TCM was conducted.A fivewavelength fusion fingerprint(FWFF)was developed,using second-order derivatives of UV spectral data to differentiate sample levels effectively.The combination of HPLC and UV spectrophotometry,along with electrochemical fingerprinting(ECFP),successfully evaluated total active substances.Ultimately,a multidimensional profiling analytical system for TCM was developed.展开更多
Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classification...Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classifications and mathematical methods of MSIF, a structural damage detection method based on MSIF is presented, which is to fuse two or more damage character vectors from different structural damage diagnosis methods on the character-level. In an experiment of concrete plates, modal information is measured and analyzed. The structural damage detection method based on MSIF is taken to localize cracks of concrete plates and it is proved to be effective. Results of damage detection by the method based on MSIF are compared with those from the modal strain energy method and the flexibility method. Damage, which can hardly be detected by using the single damage identification method, can be diagnosed by the damage detection method based on the character-level MSIF technique. Meanwhile multi-location damage can be identified by the method based on MSIF. This method is sensitive to structural damage and different mathematical methods for MSIF have different preconditions and applicabilities for diversified structures. How to choose mathematical methods for MSIF should be discussed in detail in health monitoring systems of actual structures.展开更多
The problem of the unmanned surface vessel (USV) path planning in static and dynamic obstacle environments is addressed in this paper. Multi-behavior fusion based potential field method is proposed, which contains thr...The problem of the unmanned surface vessel (USV) path planning in static and dynamic obstacle environments is addressed in this paper. Multi-behavior fusion based potential field method is proposed, which contains three behaviors: goal-seeking, boundary-memory following and dynamic-obstacle avoidance. Then, different activation conditions are designed to determine the current behavior. Meanwhile, information on the positions, velocities and the equation of motion for obstacles are detected and calculated by sensor data. Besides, memory information is introduced into the boundary following behavior to enhance cognition capability for the obstacles, and avoid local minima problem caused by the potential field method. Finally, the results of theoretical analysis and simulation show that the collision-free path can be generated for USV within different obstacle environments, and further validated the performance and effectiveness of the presented strategy.展开更多
Satellite remote sensing of inland water body requires a high spatial resolution and a multiband narrow spectral resolution, which makes the fusion between panchromatic(PAN) and multi-spectral(MS) images particularly ...Satellite remote sensing of inland water body requires a high spatial resolution and a multiband narrow spectral resolution, which makes the fusion between panchromatic(PAN) and multi-spectral(MS) images particularly important. Taking the Daquekou section of the Qiantang River as an observation target, four conventional fusion methods widely accepted in satellite image processing, including pan sharpening(PS), principal component analysis(PCA), Gram-Schmidt(GS), and wavelet fusion(WF), are utilized to fuse MS and PAN images of GF-1.The results of subjective and objective evaluation methods application indicate that GS performs the best,followed by the PCA, the WF and the PS in the order of descending. The existence of a large area of the water body is a dominant factor impacting the fusion performance. Meanwhile, the ability of retaining spatial and spectral informations is an important factor affecting the fusion performance of different fusion methods. The fundamental difference of reflectivity information acquisition between water and land is the reason for the failure of conventional fusion methods for land observation such as the PS to be used in the presence of the large water body. It is suggested that the adoption of the conventional fusion methods in the observing water body as the main target should be taken with caution. The performances of the fusion methods need re-assessment when the large-scale water body is present in the remote sensing image or when the research aims for the water body observation.展开更多
Weighted fusion algorithms, which can be applied in the area of multi-sensor data fusion, are advanced based on weighted least square method. A weighted fusion algorithm, in which the relationship between weight coeff...Weighted fusion algorithms, which can be applied in the area of multi-sensor data fusion, are advanced based on weighted least square method. A weighted fusion algorithm, in which the relationship between weight coefficients and measurement noise is established, is proposed by giving attention to the correlation of measurement noise. Then a simplified weighted fusion algorithm is deduced on the assumption that measurement noise is uncorrelated. In addition, an algorithm, which can adjust the weight coefficients in the simplified algorithm by making estimations of measurement noise from measurements, is presented. It is proved by emulation and experiment that the precision performance of the multi-sensor system based on these algorithms is better than that of the multi-sensor system based on other algorithms.展开更多
Considering that there is no single full reference image quality assessment method that could give the best performance in all situations, some multi-method fusion metrics were proposed. Machine learning techniques ar...Considering that there is no single full reference image quality assessment method that could give the best performance in all situations, some multi-method fusion metrics were proposed. Machine learning techniques are often involved in such multi-method fusion metrics so that its output would be more consistent with human visual perceptions. On the other hand, the robustness and generalization ability of these multi-method fusion metrics are questioned because of the scarce of images with mean opinion scores. In order to comprehensively validate whether or not the generalization ability of such multi-method fusion IQA metrics are satisfying, we construct a new image database which contains up to 60 reference images. The newly built image database is then used to test the generalization ability of different multi-method fusion IQA metrics. Cross database validation experiment indicates that in our new image database, the performances of all the multi-method fusion IQA metrics have no statistical significant different with some single-method IQA metrics such as FSIM and MAD. In the end, a thorough analysis is given to explain why the performance of multi-method fusion IQA framework drop significantly in cross database validation.展开更多
The anisotropy of the structure and properties caused by the strong epitaxial growth of grains during laser powder bed fusion(L-PBF)significantly affects the mechanical performance of Inconel 718 alloy components such...The anisotropy of the structure and properties caused by the strong epitaxial growth of grains during laser powder bed fusion(L-PBF)significantly affects the mechanical performance of Inconel 718 alloy components such as turbine disks.The defects(lack-of-fusion Lo F)in components processed via L-PBF are detrimental to the strength of the alloy.The purpose of this study is to investigate the effect of laser scanning parameters on the epitaxial grain growth and LoF formation in order to obtain the parameter space in which the microstructure is refined and LoF defect is suppressed.The temperature field of the molten pool and the epitaxial grain growth are simulated using a multiscale model combining the finite element method with the phase-field method.The LoF model is proposed to predict the formation of LoF defects resulting from insufficient melting during L-PBF.Defect mitigation and grain-structure control during L-PBF can be realized simultaneously in the model.The simulation shows the input laser energy density for the as-deposited structure with fine grains and without LoF defects varied from 55.0–62.5 J·mm^(-3)when the interlayer rotation angle was 0°–90°.The optimized process parameters(laser power of 280 W,scanning speed of 1160 mm·s^(-1),and rotation angle of 67°)were computationally screened.In these conditions,the average grain size was 7.0μm,and the ultimate tensile strength and yield strength at room temperature were(1111±3)MPa and(820±7)MPa,respectively,which is 8.8%and10.5%higher than those of reported.The results indicating the proposed multiscale computational approach for predicting grain growth and Lo F defects could allow simultaneous grain-structure control and defect mitigation during L-PBF.展开更多
The control rod drive mechanism(CRDM)is an essential part of the control and safety protection system of pressurized water reactors.Current CRDM simulations are mostly performed collectively using a single method,igno...The control rod drive mechanism(CRDM)is an essential part of the control and safety protection system of pressurized water reactors.Current CRDM simulations are mostly performed collectively using a single method,ignoring the influence of multiple motion units and the differences in various features among them,which strongly affect the efficiency and accuracy of the simulations.In this study,we constructed a flow field fusion simulation method based on model features by combining key motion unit analysis and various simulation methods and then applied the method to the CRDM simulation process.CRDM performs motion unit decomposition through the structural hierarchy of function-movement-action method,and the key meta-actions are identified as the nodes in the flow field simulation.We established a fused feature-based multimethod simulation process and processed the simulation methods and data according to the features of the fluid domain space and the structural complexity to obtain the fusion simulation results.Compared to traditional simulation methods and real measurements,the simulation method provides advantages in terms of simulation efficiency and accuracy.展开更多
In order to improve the accuracy of building structure identification using remote sensing images,a building structure classification method based on multi-feature fusion of UAV remote sensing image is proposed in thi...In order to improve the accuracy of building structure identification using remote sensing images,a building structure classification method based on multi-feature fusion of UAV remote sensing image is proposed in this paper.Three identification approaches of remote sensing images are integrated in this method:object-oriented,texture feature,and digital elevation based on DSM and DEM.So RGB threshold classification method is used to classify the identification results.The accuracy of building structure classification based on each feature and the multi-feature fusion are compared and analyzed.The results show that the building structure classification method is feasible and can accurately identify the structures in large-area remote sensing images.展开更多
Sample preparation by fusion for XRF analysis is all about knowing the exact weights of the sample and the flux (sample-to-flux ratio). The whole analytical chain, including the weighing step in sample preparation pri...Sample preparation by fusion for XRF analysis is all about knowing the exact weights of the sample and the flux (sample-to-flux ratio). The whole analytical chain, including the weighing step in sample preparation prior to fusion, is of crucial importance to get precise and accurate x-ray fluorescence (XRF) results. Consequently, the weighing method will affect the quality of the analytical results given by the spectrometer. In this study, the effects of different weighing methods on the precision (RSD) of the obtained XRF results are compared to determine the best weighing method for sample preparation by fusion in terms of comparable precisions in the XRF results.展开更多
Content-based medical image retrieval(CBMIR)is a technique for retrieving medical images based on automatically derived image features.There are many applications of CBMIR,such as teaching,research,diagnosis and elect...Content-based medical image retrieval(CBMIR)is a technique for retrieving medical images based on automatically derived image features.There are many applications of CBMIR,such as teaching,research,diagnosis and electronic patient records.Several methods are applied to enhance the retrieval performance of CBMIR systems.Developing new and effective similarity measure and features fusion methods are two of the most powerful and effective strategies for improving these systems.This study proposes the relative difference-based similarity measure(RDBSM)for CBMIR.The new measure was first used in the similarity calculation stage for the CBMIR using an unweighted fusion method of traditional color and texture features.Furthermore,the study also proposes a weighted fusion method for medical image features extracted using pre-trained convolutional neural networks(CNNs)models.Our proposed RDBSM has outperformed the standard well-known similarity and distance measures using two popular medical image datasets,Kvasir and PH2,in terms of recall and precision retrieval measures.The effectiveness and quality of our proposed similarity measure are also proved using a significant test and statistical confidence bound.展开更多
The numerous photos captured by low-price Internet of Things(IoT)sensors are frequently affected by meteorological factors,especially rainfall.It causes varying sizes of white streaks on the image,destroying the image...The numerous photos captured by low-price Internet of Things(IoT)sensors are frequently affected by meteorological factors,especially rainfall.It causes varying sizes of white streaks on the image,destroying the image texture and ruining the performance of the outdoor computer vision system.Existing methods utilise training with pairs of images,which is difficult to cover all scenes and leads to domain gaps.In addition,the network structures adopt deep learning to map rain images to rain-free images,failing to use prior knowledge effectively.To solve these problems,we introduce a single image derain model in edge computing that combines prior knowledge of rain patterns with the learning capability of the neural network.Specifically,the algorithm first uses Residue Channel Prior to filter out the rainfall textural features then it uses the Feature Fusion Module to fuse the original image with the background feature information.This results in a pre-processed image which is fed into Half Instance Net(HINet)to recover a high-quality rain-free image with a clear and accurate structure,and the model does not rely on any rainfall assumptions.Experimental results on synthetic and real-world datasets show that the average peak signal-to-noise ratio of the model decreases by 0.37 dB on the synthetic dataset and increases by 0.43 dB on the real-world dataset,demonstrating that a combined model reduces the gap between synthetic data and natural rain scenes,improves the generalization ability of the derain network,and alleviates the overfitting problem.展开更多
The treatment of pathologies in the thoracic spine is a challenge. The periodic failure of pedicle screw insertion and anatomical variations make the search for an alternative to pedicle screws in thoracic spine surge...The treatment of pathologies in the thoracic spine is a challenge. The periodic failure of pedicle screw insertion and anatomical variations make the search for an alternative to pedicle screws in thoracic spine surgery necessary. The interlaminar crossed screws is a well-known and secure method for fusion in cervical spine, and in thoracic spine there used to be insufficient clinical data to support this technique, until now. We demonstrate in an initial series of 10 cases treated with interlaminar fusion in association of other fusion techniques in the thoracic spine with good results. Objective: Intralaminar screws have been shown to be a biomechanical salvage technique in the thoracic spine, especially in long cervicothoracic, thoracic and thoracolumbar fixation. The goals of this article are to demonstrate our initial experience and the range of indications for thoracic crossed intralaminar screws. Methods: In this article we describe our initial series performed at São Teotónio Hospital in Viseu, Portugal, and our results, and also provide a comprehensive review of the recent literature in the use of intralaminar crossed fixation.展开更多
In thefield of diagnosis of medical images the challenge lies in tracking and identifying the defective cells and the extent of the defective region within the complex structure of a brain cavity.Locating the defective...In thefield of diagnosis of medical images the challenge lies in tracking and identifying the defective cells and the extent of the defective region within the complex structure of a brain cavity.Locating the defective cells precisely during the diagnosis phase helps tofight the greatest exterminator of mankind.Early detec-tion of these defective cells requires an accurate computer-aided diagnostic system(CAD)that supports early treatment and promotes survival rates of patients.An ear-lier version of CAD systems relies greatly on the expertise of radiologist and it con-sumed more time to identify the defective region.The manuscript takes the efficacy of coalescing features like intensity,shape,and texture of the magnetic resonance image(MRI).In the Enhanced Feature Fusion Segmentation based classification method(EEFS)the image is enhanced and segmented to extract the prominent fea-tures.To bring out the desired effect the EEFS method uses Enhanced Local Binary Pattern(EnLBP),Partisan Gray Level Co-occurrence Matrix Histogram of Oriented Gradients(PGLCMHOG),and iGrab cut method to segment image.These prominent features along with deep features are coalesced to provide a single-dimensional fea-ture vector that is effectively used for prediction.The coalesced vector is used with the existing classifiers to compare the results of these classifiers with that of the gen-erated vector.The generated vector provides promising results with commendably less computatio nal time for pre-processing and classification of MR medical images.展开更多
基金funded by National Natural Science Foundation of China(Grant Nos.42272333,42277147).
文摘Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized characteristics of mining slopes,this study introduces a new method that fuses model data from Unmanned aerial vehicles(UAV)tilt photogrammetry and 3D laser scanning through a data alignment algorithm based on control points.First,the mini batch K-Medoids algorithm is utilized to cluster the point cloud data from ground 3D laser scanning.Then,the elbow rule is applied to determine the optimal cluster number(K0),and the feature points are extracted.Next,the nearest neighbor point algorithm is employed to match the feature points obtained from UAV tilt photogrammetry,and the internal point coordinates are adjusted through the distanceweighted average to construct a 3D model.Finally,by integrating an engineering case study,the K0 value is determined to be 8,with a matching accuracy between the two model datasets ranging from 0.0669 to 1.0373 mm.Therefore,compared with the modeling method utilizing K-medoids clustering algorithm,the new modeling method significantly enhances the computational efficiency,the accuracy of selecting the optimal number of feature points in 3D laser scanning,and the precision of the 3D model derived from UAV tilt photogrammetry.This method provides a research foundation for constructing mine slope model.
基金Supported by National Key R&D Program of China(Grant Nos.2020YFB1709901,2020YFB1709904)National Natural Science Foundation of China(Grant Nos.51975495,51905460)+1 种基金Guangdong Provincial Basic and Applied Basic Research Foundation of China(Grant No.2021-A1515012286)Science and Technology Plan Project of Fuzhou City of China(Grant No.2022-P-022).
文摘The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual loads in the research on parameter estimation of valve-controlled cylinder system.Despite the actual load information contained in the operating data of the control valve,its acquisition remains challenging.This paper proposes a method that fuses bench test and operating data for parameter estimation to address the aforementioned problems.The proposed method is based on Bayesian theory,and its core is a pool fusion of prior information from bench test and operating data.Firstly,a system model is established,and the parameters in the model are analysed.Secondly,the bench and operating data of the system are collected.Then,the model parameters and weight coefficients are estimated using the data fusion method.Finally,the estimated effects of the data fusion method,Bayesian method,and particle swarm optimisation(PSO)algorithm on system model parameters are compared.The research shows that the weight coefficient represents the contribution of different prior information to the parameter estimation result.The effect of parameter estimation based on the data fusion method is better than that of the Bayesian method and the PSO algorithm.Increasing load complexity leads to a decrease in model accuracy,highlighting the crucial role of the data fusion method in parameter estimation studies.
基金the National Natural Science Foundation of China(No.61975015)the Research and Innovation Project for Graduate Students at Zhongyuan University of Technology(No.YKY2024ZK14).
文摘Human posture estimation is a prominent research topic in the fields of human-com-puter interaction,motion recognition,and other intelligent applications.However,achieving highaccuracy in key point localization,which is crucial for intelligent applications,contradicts the lowdetection accuracy of human posture detection models in practical scenarios.To address this issue,a human pose estimation network called AT-HRNet has been proposed,which combines convolu-tional self-attention and cross-dimensional feature transformation.AT-HRNet captures significantfeature information from various regions in an adaptive manner,aggregating them through convolu-tional operations within the local receptive domain.The residual structures TripNeck and Trip-Block of the high-resolution network are designed to further refine the key point locations,wherethe attention weight is adjusted by a cross-dimensional interaction to obtain more features.To vali-date the effectiveness of this network,AT-HRNet was evaluated using the COCO2017 dataset.Theresults show that AT-HRNet outperforms HRNet by improving 3.2%in mAP,4.0%in AP75,and3.9%in AP^(M).This suggests that AT-HRNet can offer more beneficial solutions for human posture estimation.
基金This study was supported by the National Natural Science Foundation of China(No.81573586).
文摘Aiming to ensure the consistency of quality control of Traditional Chinese Medicines(TCMs),a combination method of high-performance liquid chromatography(HPLC),ultraviolet(UV),electrochemical(EC)was developed in this study to comprehensively evaluate the quality of Antiviral Mixture(AM),and Comprehensive Linear Quantification Fingerprint Method(CLQFM)was used to process the data.Quantitative analysis of three active substances in TCM was conducted.A fivewavelength fusion fingerprint(FWFF)was developed,using second-order derivatives of UV spectral data to differentiate sample levels effectively.The combination of HPLC and UV spectrophotometry,along with electrochemical fingerprinting(ECFP),successfully evaluated total active substances.Ultimately,a multidimensional profiling analytical system for TCM was developed.
基金The National High Technology Research and Develop-ment Program of China(863Program)(No.2006AA04Z416)the Na-tional Science Fund for Distinguished Young Scholars(No.50725828)the Excellent Dissertation Program for Doctoral Degree of Southeast University(No.0705)
文摘Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classifications and mathematical methods of MSIF, a structural damage detection method based on MSIF is presented, which is to fuse two or more damage character vectors from different structural damage diagnosis methods on the character-level. In an experiment of concrete plates, modal information is measured and analyzed. The structural damage detection method based on MSIF is taken to localize cracks of concrete plates and it is proved to be effective. Results of damage detection by the method based on MSIF are compared with those from the modal strain energy method and the flexibility method. Damage, which can hardly be detected by using the single damage identification method, can be diagnosed by the damage detection method based on the character-level MSIF technique. Meanwhile multi-location damage can be identified by the method based on MSIF. This method is sensitive to structural damage and different mathematical methods for MSIF have different preconditions and applicabilities for diversified structures. How to choose mathematical methods for MSIF should be discussed in detail in health monitoring systems of actual structures.
基金financially supported by the National Natural Science Foundation of China(Grant No.51879049)DK-I Dynamic Positioning System Console Project
文摘The problem of the unmanned surface vessel (USV) path planning in static and dynamic obstacle environments is addressed in this paper. Multi-behavior fusion based potential field method is proposed, which contains three behaviors: goal-seeking, boundary-memory following and dynamic-obstacle avoidance. Then, different activation conditions are designed to determine the current behavior. Meanwhile, information on the positions, velocities and the equation of motion for obstacles are detected and calculated by sensor data. Besides, memory information is introduced into the boundary following behavior to enhance cognition capability for the obstacles, and avoid local minima problem caused by the potential field method. Finally, the results of theoretical analysis and simulation show that the collision-free path can be generated for USV within different obstacle environments, and further validated the performance and effectiveness of the presented strategy.
基金The National Key Research and Development Program of China under contract Nos 2016YFC1400901 and 2018YFC1406600the National Natural Science Foundation of China under contract No.40706057+1 种基金the Environmental Protection and Science and Technology Plan Project of Zhejiang Province of China under contract No.2013A021the Research Center for Air Pollution and Health of Zhejiang University
文摘Satellite remote sensing of inland water body requires a high spatial resolution and a multiband narrow spectral resolution, which makes the fusion between panchromatic(PAN) and multi-spectral(MS) images particularly important. Taking the Daquekou section of the Qiantang River as an observation target, four conventional fusion methods widely accepted in satellite image processing, including pan sharpening(PS), principal component analysis(PCA), Gram-Schmidt(GS), and wavelet fusion(WF), are utilized to fuse MS and PAN images of GF-1.The results of subjective and objective evaluation methods application indicate that GS performs the best,followed by the PCA, the WF and the PS in the order of descending. The existence of a large area of the water body is a dominant factor impacting the fusion performance. Meanwhile, the ability of retaining spatial and spectral informations is an important factor affecting the fusion performance of different fusion methods. The fundamental difference of reflectivity information acquisition between water and land is the reason for the failure of conventional fusion methods for land observation such as the PS to be used in the presence of the large water body. It is suggested that the adoption of the conventional fusion methods in the observing water body as the main target should be taken with caution. The performances of the fusion methods need re-assessment when the large-scale water body is present in the remote sensing image or when the research aims for the water body observation.
文摘Weighted fusion algorithms, which can be applied in the area of multi-sensor data fusion, are advanced based on weighted least square method. A weighted fusion algorithm, in which the relationship between weight coefficients and measurement noise is established, is proposed by giving attention to the correlation of measurement noise. Then a simplified weighted fusion algorithm is deduced on the assumption that measurement noise is uncorrelated. In addition, an algorithm, which can adjust the weight coefficients in the simplified algorithm by making estimations of measurement noise from measurements, is presented. It is proved by emulation and experiment that the precision performance of the multi-sensor system based on these algorithms is better than that of the multi-sensor system based on other algorithms.
基金supported by “the Fundamental Research Funds for the Central Universities” No.2018CUCTJ081
文摘Considering that there is no single full reference image quality assessment method that could give the best performance in all situations, some multi-method fusion metrics were proposed. Machine learning techniques are often involved in such multi-method fusion metrics so that its output would be more consistent with human visual perceptions. On the other hand, the robustness and generalization ability of these multi-method fusion metrics are questioned because of the scarce of images with mean opinion scores. In order to comprehensively validate whether or not the generalization ability of such multi-method fusion IQA metrics are satisfying, we construct a new image database which contains up to 60 reference images. The newly built image database is then used to test the generalization ability of different multi-method fusion IQA metrics. Cross database validation experiment indicates that in our new image database, the performances of all the multi-method fusion IQA metrics have no statistical significant different with some single-method IQA metrics such as FSIM and MAD. In the end, a thorough analysis is given to explain why the performance of multi-method fusion IQA framework drop significantly in cross database validation.
基金supported by the National Key Research and Development Program of China(No.2021YFB 3700701)the National Natural Science Foundation of China(Nos.52090041,52022011)+1 种基金the National Major Science and Technology Projects of China(No.J2019-VI-00090123)the Key-area Research and Development Program of Guangdong Province(No.2019b010943001)。
文摘The anisotropy of the structure and properties caused by the strong epitaxial growth of grains during laser powder bed fusion(L-PBF)significantly affects the mechanical performance of Inconel 718 alloy components such as turbine disks.The defects(lack-of-fusion Lo F)in components processed via L-PBF are detrimental to the strength of the alloy.The purpose of this study is to investigate the effect of laser scanning parameters on the epitaxial grain growth and LoF formation in order to obtain the parameter space in which the microstructure is refined and LoF defect is suppressed.The temperature field of the molten pool and the epitaxial grain growth are simulated using a multiscale model combining the finite element method with the phase-field method.The LoF model is proposed to predict the formation of LoF defects resulting from insufficient melting during L-PBF.Defect mitigation and grain-structure control during L-PBF can be realized simultaneously in the model.The simulation shows the input laser energy density for the as-deposited structure with fine grains and without LoF defects varied from 55.0–62.5 J·mm^(-3)when the interlayer rotation angle was 0°–90°.The optimized process parameters(laser power of 280 W,scanning speed of 1160 mm·s^(-1),and rotation angle of 67°)were computationally screened.In these conditions,the average grain size was 7.0μm,and the ultimate tensile strength and yield strength at room temperature were(1111±3)MPa and(820±7)MPa,respectively,which is 8.8%and10.5%higher than those of reported.The results indicating the proposed multiscale computational approach for predicting grain growth and Lo F defects could allow simultaneous grain-structure control and defect mitigation during L-PBF.
基金supported by the National Natural Science Foundation of China (No. 52075350)the Special City School Strategic Cooperation Project of Sichuan University and Zigong (No.2021CDZG-3)
文摘The control rod drive mechanism(CRDM)is an essential part of the control and safety protection system of pressurized water reactors.Current CRDM simulations are mostly performed collectively using a single method,ignoring the influence of multiple motion units and the differences in various features among them,which strongly affect the efficiency and accuracy of the simulations.In this study,we constructed a flow field fusion simulation method based on model features by combining key motion unit analysis and various simulation methods and then applied the method to the CRDM simulation process.CRDM performs motion unit decomposition through the structural hierarchy of function-movement-action method,and the key meta-actions are identified as the nodes in the flow field simulation.We established a fused feature-based multimethod simulation process and processed the simulation methods and data according to the features of the fluid domain space and the structural complexity to obtain the fusion simulation results.Compared to traditional simulation methods and real measurements,the simulation method provides advantages in terms of simulation efficiency and accuracy.
基金sponsored by National Key R&D Program of China(2018YFC1504504)Youth Foundation of Yunnan Earthquake Agency(2021K01)Project of Yunnan Earthquake Agency“Chuan bang dai”(CQ3-2021001).
文摘In order to improve the accuracy of building structure identification using remote sensing images,a building structure classification method based on multi-feature fusion of UAV remote sensing image is proposed in this paper.Three identification approaches of remote sensing images are integrated in this method:object-oriented,texture feature,and digital elevation based on DSM and DEM.So RGB threshold classification method is used to classify the identification results.The accuracy of building structure classification based on each feature and the multi-feature fusion are compared and analyzed.The results show that the building structure classification method is feasible and can accurately identify the structures in large-area remote sensing images.
文摘Sample preparation by fusion for XRF analysis is all about knowing the exact weights of the sample and the flux (sample-to-flux ratio). The whole analytical chain, including the weighing step in sample preparation prior to fusion, is of crucial importance to get precise and accurate x-ray fluorescence (XRF) results. Consequently, the weighing method will affect the quality of the analytical results given by the spectrometer. In this study, the effects of different weighing methods on the precision (RSD) of the obtained XRF results are compared to determine the best weighing method for sample preparation by fusion in terms of comparable precisions in the XRF results.
基金funded by the Deanship of Scientific Research (DSR)at King Abdulaziz University,Jeddah,Saudi Arabia,Under Grant No. (G:146-830-1441).
文摘Content-based medical image retrieval(CBMIR)is a technique for retrieving medical images based on automatically derived image features.There are many applications of CBMIR,such as teaching,research,diagnosis and electronic patient records.Several methods are applied to enhance the retrieval performance of CBMIR systems.Developing new and effective similarity measure and features fusion methods are two of the most powerful and effective strategies for improving these systems.This study proposes the relative difference-based similarity measure(RDBSM)for CBMIR.The new measure was first used in the similarity calculation stage for the CBMIR using an unweighted fusion method of traditional color and texture features.Furthermore,the study also proposes a weighted fusion method for medical image features extracted using pre-trained convolutional neural networks(CNNs)models.Our proposed RDBSM has outperformed the standard well-known similarity and distance measures using two popular medical image datasets,Kvasir and PH2,in terms of recall and precision retrieval measures.The effectiveness and quality of our proposed similarity measure are also proved using a significant test and statistical confidence bound.
基金supported by the National Natural Science Foundation of China under Grant no.41975183,and Grant no.41875184 and Supported by a grant from State Key Laboratory of Resources and Environmental Information System.
文摘The numerous photos captured by low-price Internet of Things(IoT)sensors are frequently affected by meteorological factors,especially rainfall.It causes varying sizes of white streaks on the image,destroying the image texture and ruining the performance of the outdoor computer vision system.Existing methods utilise training with pairs of images,which is difficult to cover all scenes and leads to domain gaps.In addition,the network structures adopt deep learning to map rain images to rain-free images,failing to use prior knowledge effectively.To solve these problems,we introduce a single image derain model in edge computing that combines prior knowledge of rain patterns with the learning capability of the neural network.Specifically,the algorithm first uses Residue Channel Prior to filter out the rainfall textural features then it uses the Feature Fusion Module to fuse the original image with the background feature information.This results in a pre-processed image which is fed into Half Instance Net(HINet)to recover a high-quality rain-free image with a clear and accurate structure,and the model does not rely on any rainfall assumptions.Experimental results on synthetic and real-world datasets show that the average peak signal-to-noise ratio of the model decreases by 0.37 dB on the synthetic dataset and increases by 0.43 dB on the real-world dataset,demonstrating that a combined model reduces the gap between synthetic data and natural rain scenes,improves the generalization ability of the derain network,and alleviates the overfitting problem.
文摘The treatment of pathologies in the thoracic spine is a challenge. The periodic failure of pedicle screw insertion and anatomical variations make the search for an alternative to pedicle screws in thoracic spine surgery necessary. The interlaminar crossed screws is a well-known and secure method for fusion in cervical spine, and in thoracic spine there used to be insufficient clinical data to support this technique, until now. We demonstrate in an initial series of 10 cases treated with interlaminar fusion in association of other fusion techniques in the thoracic spine with good results. Objective: Intralaminar screws have been shown to be a biomechanical salvage technique in the thoracic spine, especially in long cervicothoracic, thoracic and thoracolumbar fixation. The goals of this article are to demonstrate our initial experience and the range of indications for thoracic crossed intralaminar screws. Methods: In this article we describe our initial series performed at São Teotónio Hospital in Viseu, Portugal, and our results, and also provide a comprehensive review of the recent literature in the use of intralaminar crossed fixation.
文摘In thefield of diagnosis of medical images the challenge lies in tracking and identifying the defective cells and the extent of the defective region within the complex structure of a brain cavity.Locating the defective cells precisely during the diagnosis phase helps tofight the greatest exterminator of mankind.Early detec-tion of these defective cells requires an accurate computer-aided diagnostic system(CAD)that supports early treatment and promotes survival rates of patients.An ear-lier version of CAD systems relies greatly on the expertise of radiologist and it con-sumed more time to identify the defective region.The manuscript takes the efficacy of coalescing features like intensity,shape,and texture of the magnetic resonance image(MRI).In the Enhanced Feature Fusion Segmentation based classification method(EEFS)the image is enhanced and segmented to extract the prominent fea-tures.To bring out the desired effect the EEFS method uses Enhanced Local Binary Pattern(EnLBP),Partisan Gray Level Co-occurrence Matrix Histogram of Oriented Gradients(PGLCMHOG),and iGrab cut method to segment image.These prominent features along with deep features are coalesced to provide a single-dimensional fea-ture vector that is effectively used for prediction.The coalesced vector is used with the existing classifiers to compare the results of these classifiers with that of the gen-erated vector.The generated vector provides promising results with commendably less computatio nal time for pre-processing and classification of MR medical images.