This paper transforms fuzzy number into clear number using the centroid method, thus we can research the traditional linear regression model which is transformed from the fuzzy linear regression model. The model’s in...This paper transforms fuzzy number into clear number using the centroid method, thus we can research the traditional linear regression model which is transformed from the fuzzy linear regression model. The model’s input and output are fuzzy numbers, and the regression coefficients are clear numbers. This paper considers the parameter estimation and impact analysis based on data deletion. Through the study of example and comparison with other models, it can be concluded that the model in this paper is applied easily and better.展开更多
According to the appearing of isosbestic point in the absorption spectra of Ho/Y-Tribromoarsenazo (TBA)systems,the complexation reaction is considered to be M+nL=ML_n.A method has been proposed based on it for calcula...According to the appearing of isosbestic point in the absorption spectra of Ho/Y-Tribromoarsenazo (TBA)systems,the complexation reaction is considered to be M+nL=ML_n.A method has been proposed based on it for calculating the mole fraction of free complexing agent in the solutions from spectral data.and two linear regression formula have been introduced to determine the composition,the molar absorptivity,the conditional stability constant of the complex and the concentration of the complexing agent. This method has been used in Ho-TBA and Y-TBA systems.Ho^(3+)and Y^(3+)react with TBA and form 1: 2 complexes in HCl-NaAc buffer solution at pH 3.80.Their molar absorptivities determined are 1.03×10~8 and 1.10×10~8 cm^2·mol^(-1),and the conditional stability constants(logβ_2)are 11.37 and 11.15 respectively.After considering the pH effect in TBA complexing,their stability constants(log β_2^(ahs))are 43.23 and 43.01. respectively.The new method is adaptable to such systems where the accurate concentration of the complexing agent can not be known conveniently.展开更多
A new method,dual-series linear regression method,has been used to study the complexation equilibrium of praseodymium(Pr^(3+))with tribromoarsenazo(TBA)without knowing the accurate concentra- tion of the complexing ag...A new method,dual-series linear regression method,has been used to study the complexation equilibrium of praseodymium(Pr^(3+))with tribromoarsenazo(TBA)without knowing the accurate concentra- tion of the complexing agent TBA.In 1.2 mol/L HCl solution, Pr^(3+)reacts with TBA and forms 1:3 com- plex,the conditional stability constant(lgβ_3)of the complex determined is 15.47,and its molar absorptivity(ε_3^(630))is 1.48×10~5 L·mol^(-1)·cm^(-1).展开更多
The purpose of this study was to examine the burnout levels of research assistants in Ondokuz Mayis University and to examine the results of multiple linear regression model based on the results obtained from Maslach ...The purpose of this study was to examine the burnout levels of research assistants in Ondokuz Mayis University and to examine the results of multiple linear regression model based on the results obtained from Maslach Burnout Scale with Jackknife Method in terms of validity and generalizability. To do this, a questionnaire was given to 11 research assistants working at Ondokuz Mayis University and the burnout scores of this questionnaire were taken as the dependent variable of the multiple linear regression model. The variable of burnout was explained with the variables of age, weekly hours of classes taught, monthly average credit card debt, numbers of published articles and reports, gender, marital status, number of children and the departments of the research assistants. Dummy variables were assigned to the variables of gender, marital status, number of children and the departments of the research assistants and thus, they were made quantitative. The significance of the model as a result of multiple linear regressions was examined through backward elimination method. After this, for the five explanatory variables which influenced the variable of burnout, standardized model coefficients and coefficients of determination, and 95% confidence intervals of these values were estimated through Jackknife Method and the generalizability of the parameter estimation results of these variables on population was researched.展开更多
The development of prediction supports is a critical step in information systems engineering in this era defined by the knowledge economy, the hub of which is big data. Currently, the lack of a predictive model, wheth...The development of prediction supports is a critical step in information systems engineering in this era defined by the knowledge economy, the hub of which is big data. Currently, the lack of a predictive model, whether qualitative or quantitative, depending on a company’s areas of intervention can handicap or weaken its competitive capacities, endangering its survival. In terms of quantitative prediction, depending on the efficacy criteria, a variety of methods and/or tools are available. The multiple linear regression method is one of the methods used for this purpose. A linear regression model is a regression model of an explained variable on one or more explanatory variables in which the function that links the explanatory variables to the explained variable has linear parameters. The purpose of this work is to demonstrate how to use multiple linear regressions, which is one aspect of decisional mathematics. The use of multiple linear regressions on random data, which can be replaced by real data collected by or from organizations, provides decision makers with reliable data knowledge. As a result, machine learning methods can provide decision makers with relevant and trustworthy data. The main goal of this article is therefore to define the objective function on which the influencing factors for its optimization will be defined using the linear regression method.展开更多
The concept of missing data is important to apply statistical methods on the dataset. Statisticians and researchers may end up to an inaccurate illation about the data if the missing data are not handled properly. Of ...The concept of missing data is important to apply statistical methods on the dataset. Statisticians and researchers may end up to an inaccurate illation about the data if the missing data are not handled properly. Of late, Python and R provide diverse packages for handling missing data. In this study, an imputation algorithm, cumulative linear regression, is proposed. The proposed algorithm depends on the linear regression technique. It differs from the existing methods, in that it cumulates the imputed variables;those variables will be incorporated in the linear regression equation to filling in the missing values in the next incomplete variable. The author performed a comparative study of the proposed method and those packages. The performance was measured in terms of imputation time, root-mean-square error, mean absolute error, and coefficient of determination (R^2). On analysing on five datasets with different missing values generated from different mechanisms, it was observed that the performances vary depending on the size, missing percentage, and the missingness mechanism. The results showed that the performance of the proposed method is slightly better.展开更多
In the network technology era, the collected data are growing more and more complex, and become larger than before. In this article, we focus on estimates of the linear regression parameters for symbolic interval data...In the network technology era, the collected data are growing more and more complex, and become larger than before. In this article, we focus on estimates of the linear regression parameters for symbolic interval data. We propose two approaches to estimate regression parameters for symbolic interval data under two different data models and compare our proposed approaches with the existing methods via simulations. Finally, we analyze two real datasets with the proposed methods for illustrations.展开更多
A Mobile Ad-hoc NETwork(MANET)contains numerous mobile nodes,and it forms a structure-less network associated with wireless links.But,the node movement is the key feature of MANETs;hence,the quick action of the nodes ...A Mobile Ad-hoc NETwork(MANET)contains numerous mobile nodes,and it forms a structure-less network associated with wireless links.But,the node movement is the key feature of MANETs;hence,the quick action of the nodes guides a link failure.This link failure creates more data packet drops that can cause a long time delay.As a result,measuring accurate link failure time is the key factor in the MANET.This paper presents a Fuzzy Linear Regression Method to measure Link Failure(FLRLF)and provide an optimal route in the MANET-Internet of Things(IoT).This work aims to predict link failure and improve routing efficiency in MANET.The Fuzzy Linear Regression Method(FLRM)measures the long lifespan link based on the link failure.The mobile node group is built by the Received Signal Strength(RSS).The Hill Climbing(HC)method selects the Group Leader(GL)based on node mobility,node degree and node energy.Additionally,it uses a Data Gathering node forward the infor-mation from GL to the sink node through multiple GL.The GL is identified by linking lifespan and energy using the Particle Swarm Optimization(PSO)algo-rithm.The simulation results demonstrate that the FLRLF approach increases the GL lifespan and minimizes the link failure time in the MANET.展开更多
In this paper, we study some robustness aspects of linear regression models of the presence of outliers or discordant observations considering the use of stable distributions for the response in place of the usual nor...In this paper, we study some robustness aspects of linear regression models of the presence of outliers or discordant observations considering the use of stable distributions for the response in place of the usual normality assumption. It is well known that, in general, there is no closed form for the probability density function of stable distributions. However, under a Bayesian approach, the use of a latent or auxiliary random variable gives some simplification to obtain any posterior distribution when related to stable distributions. To show the usefulness of the computational aspects, the methodology is applied to two examples: one is related to a standard linear regression model with an explanatory variable and the other is related to a simulated data set assuming a 23 factorial experiment. Posterior summaries of interest are obtained using MCMC (Markov Chain Monte Carlo) methods and the OpenBugs software.展开更多
In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the l...In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the local linear technique and the averaged method,the initial estimates of the coefficient functions are given.Second step,based on the initial estimates,the efficient estimates of the coefficient functions are proposed by a one-step back-fitting procedure.The efficient estimators share the same asymptotic normalities as the local linear estimators for the functional-coefficient models with a single smoothing variable in different functions.Two simulated examples show that the procedure is effective.展开更多
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode...Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance.展开更多
Power flow(PF)is one of the most important calculations in power systems.The widely-used PF methods are the Newton-Raphson PF(NRPF)method and the fast-decoupled PF(FDPF)method.In smart grids,power generations and load...Power flow(PF)is one of the most important calculations in power systems.The widely-used PF methods are the Newton-Raphson PF(NRPF)method and the fast-decoupled PF(FDPF)method.In smart grids,power generations and loads become intermittent and much more uncertain,and the topology also changes more frequently,which may result in significant state shifts and further make NRPF or FDPF difficult to converge.To address this problem,we propose a data-driven PF(DDPF)method based on historical/simulated data that includes an offline learning stage and an online computing stage.In the offline learning stage,a learning model is constructed based on the proposed exact linear regression equations,and then the proposed learning model is solved by the ridge regression(RR)method to suppress the effect of data collinearity.In online computing stage,the nonlinear iterative calculation is not needed.Simulation results demonstrate that the proposed DDPF method has no convergence problem and has much higher calculation efficiency than NRPF or FDPF while ensuring similar calculation accuracy.展开更多
In recent years,the ecological environment along highways in Tibetan Plateau has been severely affected due to the rapid construction of highways.In order to solve the problems of multiple indicators and inconsistent ...In recent years,the ecological environment along highways in Tibetan Plateau has been severely affected due to the rapid construction of highways.In order to solve the problems of multiple indicators and inconsistent criteria in the ecological impact assessment of highways,and to scientifically screen assessment indicators,the paper proposes a multi-round indicator screening method,which combines literature analysis,expert rating,and statistical analysis.Based on this screening method,normalized difference vegetation index,land surface temperature,elevation,and normalized difference soil index are screened out.Combined with multiple linear regression,an ecological impact assessment model is established and applied to ecological impact assessment of Gonghe-Yushu Expressway.The results show that the expressway construction is the first driving force for the deterioration of the ecological environment along the roadside,and its interference range on the desert grassland ecosystem is greater than that on the agroforestry system.The ecological environment within 150 m on both sides of the expressway should be protected.展开更多
For Microwave Humidity and Temperature sounder(MWHTS) measurements over the ocean, a cloud filtering method is presented to filter out cloud-and precipitation-affected observations by analyzing the sensitivity of the ...For Microwave Humidity and Temperature sounder(MWHTS) measurements over the ocean, a cloud filtering method is presented to filter out cloud-and precipitation-affected observations by analyzing the sensitivity of the simulated brightness temperatures of MWHTS to cloud liquid water, and using the root mean square error(RMSE)between observation and simulation in clear sky as a reference standard. The atmospheric temperature and humidity profiles are retrieved using MWHTS measurements with and without filtering by multiple linear regression(MLR),artificial neural networks(ANN) and one-dimensional variational(1DVAR) retrieval methods, respectively, and the effects of the filtering method on the retrieval accuracies are analyzed. The numerical results show that the filtering method can improve the retrieval accuracies of the MLR and the 1DVAR retrieval methods, but have little influence on that of the ANN. In addition, the dependencies of the retrieval methods upon the testing samples of brightness temperature are studied, and the results show that the 1DVAR retrieval method has great stability due to that the testing samples have great impact on the retrieval accuracies of the MLR and the ANN, but have little impact on that of the 1DVAR.展开更多
文摘This paper transforms fuzzy number into clear number using the centroid method, thus we can research the traditional linear regression model which is transformed from the fuzzy linear regression model. The model’s input and output are fuzzy numbers, and the regression coefficients are clear numbers. This paper considers the parameter estimation and impact analysis based on data deletion. Through the study of example and comparison with other models, it can be concluded that the model in this paper is applied easily and better.
文摘According to the appearing of isosbestic point in the absorption spectra of Ho/Y-Tribromoarsenazo (TBA)systems,the complexation reaction is considered to be M+nL=ML_n.A method has been proposed based on it for calculating the mole fraction of free complexing agent in the solutions from spectral data.and two linear regression formula have been introduced to determine the composition,the molar absorptivity,the conditional stability constant of the complex and the concentration of the complexing agent. This method has been used in Ho-TBA and Y-TBA systems.Ho^(3+)and Y^(3+)react with TBA and form 1: 2 complexes in HCl-NaAc buffer solution at pH 3.80.Their molar absorptivities determined are 1.03×10~8 and 1.10×10~8 cm^2·mol^(-1),and the conditional stability constants(logβ_2)are 11.37 and 11.15 respectively.After considering the pH effect in TBA complexing,their stability constants(log β_2^(ahs))are 43.23 and 43.01. respectively.The new method is adaptable to such systems where the accurate concentration of the complexing agent can not be known conveniently.
文摘A new method,dual-series linear regression method,has been used to study the complexation equilibrium of praseodymium(Pr^(3+))with tribromoarsenazo(TBA)without knowing the accurate concentra- tion of the complexing agent TBA.In 1.2 mol/L HCl solution, Pr^(3+)reacts with TBA and forms 1:3 com- plex,the conditional stability constant(lgβ_3)of the complex determined is 15.47,and its molar absorptivity(ε_3^(630))is 1.48×10~5 L·mol^(-1)·cm^(-1).
文摘The purpose of this study was to examine the burnout levels of research assistants in Ondokuz Mayis University and to examine the results of multiple linear regression model based on the results obtained from Maslach Burnout Scale with Jackknife Method in terms of validity and generalizability. To do this, a questionnaire was given to 11 research assistants working at Ondokuz Mayis University and the burnout scores of this questionnaire were taken as the dependent variable of the multiple linear regression model. The variable of burnout was explained with the variables of age, weekly hours of classes taught, monthly average credit card debt, numbers of published articles and reports, gender, marital status, number of children and the departments of the research assistants. Dummy variables were assigned to the variables of gender, marital status, number of children and the departments of the research assistants and thus, they were made quantitative. The significance of the model as a result of multiple linear regressions was examined through backward elimination method. After this, for the five explanatory variables which influenced the variable of burnout, standardized model coefficients and coefficients of determination, and 95% confidence intervals of these values were estimated through Jackknife Method and the generalizability of the parameter estimation results of these variables on population was researched.
文摘The development of prediction supports is a critical step in information systems engineering in this era defined by the knowledge economy, the hub of which is big data. Currently, the lack of a predictive model, whether qualitative or quantitative, depending on a company’s areas of intervention can handicap or weaken its competitive capacities, endangering its survival. In terms of quantitative prediction, depending on the efficacy criteria, a variety of methods and/or tools are available. The multiple linear regression method is one of the methods used for this purpose. A linear regression model is a regression model of an explained variable on one or more explanatory variables in which the function that links the explanatory variables to the explained variable has linear parameters. The purpose of this work is to demonstrate how to use multiple linear regressions, which is one aspect of decisional mathematics. The use of multiple linear regressions on random data, which can be replaced by real data collected by or from organizations, provides decision makers with reliable data knowledge. As a result, machine learning methods can provide decision makers with relevant and trustworthy data. The main goal of this article is therefore to define the objective function on which the influencing factors for its optimization will be defined using the linear regression method.
文摘The concept of missing data is important to apply statistical methods on the dataset. Statisticians and researchers may end up to an inaccurate illation about the data if the missing data are not handled properly. Of late, Python and R provide diverse packages for handling missing data. In this study, an imputation algorithm, cumulative linear regression, is proposed. The proposed algorithm depends on the linear regression technique. It differs from the existing methods, in that it cumulates the imputed variables;those variables will be incorporated in the linear regression equation to filling in the missing values in the next incomplete variable. The author performed a comparative study of the proposed method and those packages. The performance was measured in terms of imputation time, root-mean-square error, mean absolute error, and coefficient of determination (R^2). On analysing on five datasets with different missing values generated from different mechanisms, it was observed that the performances vary depending on the size, missing percentage, and the missingness mechanism. The results showed that the performance of the proposed method is slightly better.
文摘In the network technology era, the collected data are growing more and more complex, and become larger than before. In this article, we focus on estimates of the linear regression parameters for symbolic interval data. We propose two approaches to estimate regression parameters for symbolic interval data under two different data models and compare our proposed approaches with the existing methods via simulations. Finally, we analyze two real datasets with the proposed methods for illustrations.
文摘A Mobile Ad-hoc NETwork(MANET)contains numerous mobile nodes,and it forms a structure-less network associated with wireless links.But,the node movement is the key feature of MANETs;hence,the quick action of the nodes guides a link failure.This link failure creates more data packet drops that can cause a long time delay.As a result,measuring accurate link failure time is the key factor in the MANET.This paper presents a Fuzzy Linear Regression Method to measure Link Failure(FLRLF)and provide an optimal route in the MANET-Internet of Things(IoT).This work aims to predict link failure and improve routing efficiency in MANET.The Fuzzy Linear Regression Method(FLRM)measures the long lifespan link based on the link failure.The mobile node group is built by the Received Signal Strength(RSS).The Hill Climbing(HC)method selects the Group Leader(GL)based on node mobility,node degree and node energy.Additionally,it uses a Data Gathering node forward the infor-mation from GL to the sink node through multiple GL.The GL is identified by linking lifespan and energy using the Particle Swarm Optimization(PSO)algo-rithm.The simulation results demonstrate that the FLRLF approach increases the GL lifespan and minimizes the link failure time in the MANET.
基金financial support from the Brazilian Institution Conselho Nacional de Desenvolvimento Cientifico e Tecnologico(CNPq).
文摘In this paper, we study some robustness aspects of linear regression models of the presence of outliers or discordant observations considering the use of stable distributions for the response in place of the usual normality assumption. It is well known that, in general, there is no closed form for the probability density function of stable distributions. However, under a Bayesian approach, the use of a latent or auxiliary random variable gives some simplification to obtain any posterior distribution when related to stable distributions. To show the usefulness of the computational aspects, the methodology is applied to two examples: one is related to a standard linear regression model with an explanatory variable and the other is related to a simulated data set assuming a 23 factorial experiment. Posterior summaries of interest are obtained using MCMC (Markov Chain Monte Carlo) methods and the OpenBugs software.
文摘In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the local linear technique and the averaged method,the initial estimates of the coefficient functions are given.Second step,based on the initial estimates,the efficient estimates of the coefficient functions are proposed by a one-step back-fitting procedure.The efficient estimators share the same asymptotic normalities as the local linear estimators for the functional-coefficient models with a single smoothing variable in different functions.Two simulated examples show that the procedure is effective.
文摘Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance.
基金supported in part by National Natural Science Foundation of China(No.52077076)in part by the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(No.LAPS202118)。
文摘Power flow(PF)is one of the most important calculations in power systems.The widely-used PF methods are the Newton-Raphson PF(NRPF)method and the fast-decoupled PF(FDPF)method.In smart grids,power generations and loads become intermittent and much more uncertain,and the topology also changes more frequently,which may result in significant state shifts and further make NRPF or FDPF difficult to converge.To address this problem,we propose a data-driven PF(DDPF)method based on historical/simulated data that includes an offline learning stage and an online computing stage.In the offline learning stage,a learning model is constructed based on the proposed exact linear regression equations,and then the proposed learning model is solved by the ridge regression(RR)method to suppress the effect of data collinearity.In online computing stage,the nonlinear iterative calculation is not needed.Simulation results demonstrate that the proposed DDPF method has no convergence problem and has much higher calculation efficiency than NRPF or FDPF while ensuring similar calculation accuracy.
基金supported by the National Natural Science Foundation of China(NSFC)(No.41801387)。
文摘In recent years,the ecological environment along highways in Tibetan Plateau has been severely affected due to the rapid construction of highways.In order to solve the problems of multiple indicators and inconsistent criteria in the ecological impact assessment of highways,and to scientifically screen assessment indicators,the paper proposes a multi-round indicator screening method,which combines literature analysis,expert rating,and statistical analysis.Based on this screening method,normalized difference vegetation index,land surface temperature,elevation,and normalized difference soil index are screened out.Combined with multiple linear regression,an ecological impact assessment model is established and applied to ecological impact assessment of Gonghe-Yushu Expressway.The results show that the expressway construction is the first driving force for the deterioration of the ecological environment along the roadside,and its interference range on the desert grassland ecosystem is greater than that on the agroforestry system.The ecological environment within 150 m on both sides of the expressway should be protected.
基金Key Fostering Project of National Space Science Center,Chinese Academy of Sciences(Y62112f37s)National 863 Project of China(2015AA8126027)
文摘For Microwave Humidity and Temperature sounder(MWHTS) measurements over the ocean, a cloud filtering method is presented to filter out cloud-and precipitation-affected observations by analyzing the sensitivity of the simulated brightness temperatures of MWHTS to cloud liquid water, and using the root mean square error(RMSE)between observation and simulation in clear sky as a reference standard. The atmospheric temperature and humidity profiles are retrieved using MWHTS measurements with and without filtering by multiple linear regression(MLR),artificial neural networks(ANN) and one-dimensional variational(1DVAR) retrieval methods, respectively, and the effects of the filtering method on the retrieval accuracies are analyzed. The numerical results show that the filtering method can improve the retrieval accuracies of the MLR and the 1DVAR retrieval methods, but have little influence on that of the ANN. In addition, the dependencies of the retrieval methods upon the testing samples of brightness temperature are studied, and the results show that the 1DVAR retrieval method has great stability due to that the testing samples have great impact on the retrieval accuracies of the MLR and the ANN, but have little impact on that of the 1DVAR.