The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establis...The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence.展开更多
As a key carrier supporting urban ecological health and living environment quality,urban ecological network is a key focus of current urban green space research.Jingzhou City of Hubei Province is taken as the research...As a key carrier supporting urban ecological health and living environment quality,urban ecological network is a key focus of current urban green space research.Jingzhou City of Hubei Province is taken as the research object.Relying on GIS technology platform,MSPA method is used to analyze the landscape pattern of Jingzhou City.On this basis,the landscape connectivity evaluation method is used to accurately identify and extract the source areas with important ecological value in Jingzhou City.Then,the normalization method and weighting method are combined to create a resistance factor evaluation system to construct the resistance surface.Based on the MCR model,the ecological network of Jingzhou City is successfully constructed,and targeted spatial optimization strategies and development suggestions are proposed.展开更多
In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the model...In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the modeling samples and obtain the overall information of the system;for the purpose of modeling the system or its characteristics, the artificial neural network is used to construct the model. Experiment indicates that this method can model the complex system effectively.展开更多
Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, co...Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, combining neural network with the partial least square method. Dealt with independent variables by the partial least square method, it can not only solve the relationship between independent variables but also reduce the input dimensions in neural network model, and then use the neural network which can solve the non-linear problem better. The result of an example shows that the prediction has higher precision in forecasting and fitting.展开更多
The lower limb exoskeletons are used to assist wearers in various scenarios such as medical and industrial settings.Complex modeling errors of the exoskeleton in different application scenarios pose challenges to the ...The lower limb exoskeletons are used to assist wearers in various scenarios such as medical and industrial settings.Complex modeling errors of the exoskeleton in different application scenarios pose challenges to the robustness and stability of its control algorithm.The Radial Basis Function(RBF)neural network is used widely to compensate for modeling errors.In order to solve the problem that the current RBF neural network controllers cannot guarantee the asymptotic stability,a neural network robust control algorithm based on computed torque method is proposed in this paper,focusing on trajectory tracking.It innovatively incorporates the robust adaptive term while introducing the RBF neural network term,improving the compensation ability for modeling errors.The stability of the algorithm is proved by Lyapunov method,and the effectiveness of the robust adaptive term is verified by the simulation.Experiments wearing the exoskeleton under different walking speeds and scenarios were carried out,and the results show that the absolute value of tracking errors of the hip and knee joints of the exoskeleton are consistently less than 1.5°and 2.5°,respectively.The proposed control algorithm effectively compensates for modeling errors and exhibits high robustness.展开更多
Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been ...Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets.展开更多
Lampreys, as an important participant in the ecosystem, play an irreplaceable role in the stability of nature. A variety of models were used to simulate ecosystems and food webs, and the dynamic evolution of multiple ...Lampreys, as an important participant in the ecosystem, play an irreplaceable role in the stability of nature. A variety of models were used to simulate ecosystems and food webs, and the dynamic evolution of multiple populations was solved. The temporal changes of the biomass and the health of the ecosystem affected by the population of Lampreys in other ecological niches were solved. For problem 1, Firstly, a simple natural ecosystem is simulated based on the threshold model and BP neural network model. The dynamic change of the sex ratio of lampreys population and the fluctuation of ecosystem health value were found to generate time series maps. Lampreys overprey on low-niche animals, which damages the overall stability of the ecosystem. For problem 2, We used the Lotka-Volterra model to construct ecological competition between lampreys and primary consumers and predators. Then, the Lotka-Volterra equations were solved, and a control group without gender shift function was set up, which reflected the advantages and disadvantages of the sex-regulated characteristics of lampreys in the natural environment. For problem 3, The ecosystem model established in question 1 was further deepened, and the food web was simulated by the Beverton-Holt model and the Logistic time-dependent differential equations model. The parameters of the food web model were input into the neurons of the ecosystem model, and the two models were integrated to form an overall biosphere model. The output layer of the ecosystem neural network was input into the food web Beverton-Holt and Logistic differential equations, and finally, the three-dimensional analytical solution was obtained by numerical simulation. Then Euler method is used to obtain the exact value of the solution surface. The Random forest model was used to predict the future development of lampreys and other ecological niches. For problem 4, By investigating relevant literature, we normalized the populations of lampreys and a variety of fish as well as other ecological niche animals, plants and microorganisms in the same water area, set different impact weights of lampreys, constructed weight evaluation matrix, and obtained positive and negative ideal solution vectors and negative correlation proximity by using TOPSIS comprehensive evaluation method. It is concluded that many kinds of fish are greatly affected by the sex regulation of lampreys.展开更多
Fatigue life and reliability of aero-engine blade are always of important significance to flight safety.The establishment of damage model is one of the key factors in blade fatigue research.Conventional linear Miner'...Fatigue life and reliability of aero-engine blade are always of important significance to flight safety.The establishment of damage model is one of the key factors in blade fatigue research.Conventional linear Miner's sum method is not suitable for aero-engine because of its low accuracy.A back propagation neutral network(BPNN) based on the combination of Levenberg-Marquardt(LM) and finite element method(FEM) is used to describe process of nonlinear damage accumulation behavior in material and predict fatigue life of the blade.Fatigue tests of standard specimen made from TC4 are carried out to obtain material fatigue parameters and S-N curve.A nonlinear continuum damage model(CDM),based on the BPNN with one hidden layer and ten neurons,is built to investigate the nonlinear damage accumulation behavior,in which the results from the tests are used as training set.Comparing with linear models and previous nonlinear models,BPNN has the lowest calculation error in full load range.It has significant accuracy when the load is below 500 MPa.Especially,when the load is 350 MPa,the calculation error of the BPNN is only 0.4%.The accurate model of the blade is built by using 3D coordinate measurement technology.The loading cycle in fatigue analysis is defined from takeoff to cruise in 10 min,and the load history is obtained from finite element analysis(FEA).Then the fatigue life of the compressor blade is predicted by using the BPNN model.The final fatigue life of the aero-engine blade is 6.55 104 cycles(10 916 h) based on the BPNN model,which is effective for the virtual design of aero-engine blade.展开更多
Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlight...Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlights an integrated approach of designing overhanging rock slopes where the relative dimensions of the slope exceed the scale of fracturing and the rock mass failure needs to be considered rather than kinematic release of individual blocks. The key to the method is a simplified limit equilibrium(LE) tool that was used for the support design and analysis of a multi-faceted overhanging rock slope. The overhanging slopes required complex geometries with constantly changing orientations. The overhanging rock varied in height from 30 m to 66 m. Geomechanical modelling combined with discrete fracture network(DFN)representation of the rock mass was used to validate the rock mass strength assumptions and the failure mechanism assumed in the LE model. The advantage of the simplified LE method is that buttress and support design iterations(along with sensitivity analysis of design parameters) can be completed for various cross-sections along the proposed overhanging rock sections in an efficient manner, compared to the more time-intensive, sophisticated methods that were used for the initial validation. The method described presents the development of this design tool and assumptions made for a specific overhanging rock slope design. Other locations will have different geological conditions that can control the potential behaviour of rock slopes, however, the approach presented can be applied as a general guiding design principle for overhanging rock cut slope.展开更多
In this paper, we made a new breakthrough, which proposes a new recursion–transform(RT) method with potential parameters to evaluate the nodal potential in arbitrary resistor networks. For the first time, we found ...In this paper, we made a new breakthrough, which proposes a new recursion–transform(RT) method with potential parameters to evaluate the nodal potential in arbitrary resistor networks. For the first time, we found the exact potential formulae of arbitrary m × n cobweb and fan networks by the RT method, and the potential formulae of infinite and semi-infinite networks are derived. As applications, a series of interesting corollaries of potential formulae are given by using the general formula, the equivalent resistance formula is deduced by using the potential formula, and we find a new trigonometric identity by comparing two equivalence results with different forms.展开更多
Ulcerative colitis, an inflammatory bowel disease, is a chronic inflammatory disorder that results in ulcers of the colon and rectum without known etiology. Ulcerative colitis causes a huge public health care burden p...Ulcerative colitis, an inflammatory bowel disease, is a chronic inflammatory disorder that results in ulcers of the colon and rectum without known etiology. Ulcerative colitis causes a huge public health care burden particularly in developed countries. Many studies suggest that ulcerative colitis results from an abnormal immune response against components of cornrnensal rnicrobiota in genetically susceptible individuals. However, understanding of the disease mechanisms at cellular and molecular levels remains largely elusive. In this paper, a network model is developed based on our previous study and computer simulations are perforrned using an agent-based network modeling to elucidate the dynamics of immune response in ulcerative colitis progression. Our modeling study identifies several important positive feedback loops as a driving force for ulcerative colitis initiation and progression. The results demonstrate that although immune response in ulcerative colitis patients is dominated by anti-inflarnrnatory/regulatory cells such as alternatively activated rnacrophages and type II natural killer T cells, proinflarnrnatory cells including classically activated rnacrophages, T helper 1 and T helper 17 cells, and their secreted cytokines tumor necrosis factor-α, interleukin-12, interleukin-23, interleukin-17 and interferon-γ remain at certain levels (lower than those in Crohn's disease, another inflammatory bowel disease). Long-terrn exposure to these proinflarnrnatory components, causes rnucosal tissue damage persistently, leading to ulcerative colitis. Our simulation results are qualitatively in agreement with clinical and laboratory measurements, offering novel insight into the disease mechanisms.展开更多
Due to the enormous harm of virus propagation,research regarding virus immunizations still absolutely necessary.In comparison to current researches,a new virus immunization method the hierarchical virus immunization m...Due to the enormous harm of virus propagation,research regarding virus immunizations still absolutely necessary.In comparison to current researches,a new virus immunization method the hierarchical virus immunization method(HVIM) for community networks is proposed.Based on the virus transmission dynamic model SusceptibleInfectious-Removed and SusceptibleRemoved(SIRSR),HVIM considered the influence of external factors on the spread of viruses and only needs a portion of the network structure to be able to carry out immunization.Another pro for HVIM is that it is scalable and suitable for parallel computing which is a requirement in the big data era.Finally,a simulation dataset and a real dataset were used to run experiments,and the results of simulation showed that HVIM obviously is superior to others on the aspect of immunity.展开更多
Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network...Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network(BPNN)with synoptic diagnosis for predicting rainstorms,and analyzes the hit rates of rainstorms for the above two methods using the county of Tianquan as a case study.Results showed that the traditional synoptic diagnosis method still has an important referential meaning for most rainstorm types through synoptic typing and statistics of physical quantities based on historical cases,and the threat score(TS)of rainstorms was more than 0.75.However,the accuracy for two rainstorm types influenced by low-level easterly inverted troughs was less than 40%.The BPNN method efficiently forecasted these two rainstorm types;the TS and equitable threat score(ETS)of rainstorms were 0.80 and 0.79,respectively.The TS and ETS of the hybrid model that combined the BPNN and synoptic diagnosis methods exceeded the forecast score of multi-numerical simulations over the Sichuan Basin without exception.This kind of hybrid model enhanced the forecasting accuracy of rainstorms.The findings of this study provide certain reference value for the future development of refined forecast models with local features.展开更多
The models of noallnear systems are idendried by recmeive pedctive ermrs(RPE) methed based on thelayered neural networks. To improve the identification precision, gain callcient and arentUm factor are itheucedinto the...The models of noallnear systems are idendried by recmeive pedctive ermrs(RPE) methed based on thelayered neural networks. To improve the identification precision, gain callcient and arentUm factor are itheucedinto the algorithm for the data are dids by noses and vny suddnly. this lerthm is applied to the twcmedeiling of rolling and pitchng angles of ndssiles. Simulation results shoW tha the proposed algurithm is sultable forthe modelling of nodrinear systems.展开更多
The work studies model reduction method for nonlinear systems based on proper orthogonal decomposition (POD)and discrete empirical interpolation method (DEIM). Instead of using the classical DEIM to directly approxima...The work studies model reduction method for nonlinear systems based on proper orthogonal decomposition (POD)and discrete empirical interpolation method (DEIM). Instead of using the classical DEIM to directly approximate thenonlinear term of a system, our approach extracts the main part of the nonlinear term with a linear approximation beforeapproximating the residual with the DEIM. We construct the linear term by Taylor series expansion and dynamic modedecomposition (DMD), respectively, so as to obtain a more accurate reconstruction of the nonlinear term. In addition, anovel error prediction model is devised for the POD-DEIM reduced systems by employing neural networks with the aid oferror data. The error model is cheaply computable and can be adopted as a remedy model to enhance the reduction accuracy.Finally, numerical experiments are performed on two nonlinear problems to show the performance of the proposed method.展开更多
Ventilation characteristic parameters are the base of ventilation network solution; however, they are apt to be affected by operating errors, reading errors, airflow stability, and other factors, and it is difficult t...Ventilation characteristic parameters are the base of ventilation network solution; however, they are apt to be affected by operating errors, reading errors, airflow stability, and other factors, and it is difficult to obtain accurate results. In order to check the ventilation characteristic parameters of mines more accurately, the integrated method of circuit and path is adopted to overcome the drawbacks caused by the traditional path method or circuit method in the digital debugging process of ventilation system, which can improve the large local error or the inconsistency between the airflow direction and the actual situation caused by inaccuracy of the ventilation characteristic parameters or checking in the ventilation network solution. The results show that this method can effectively reduce the local error and prevent the pseudo-airflow reversal phenomenon; in addition, the solution results are consistent with the actual situation of mines, and the effect is obvious.展开更多
This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was t...This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was too complicated to be used in a control system. Consequently, an off line radial basis function (RBF) network was introduced to build a nonlinear predictive model. And then, the optimal control sequences were obtained by applying golden mean method. The models and controller have been realized in the MATLAB environment. Simulation results indicate the proposed algorithm exhibits satisfying control effect even when the current densities vary largely.展开更多
A new back-analysis method of ground stress is proposed with comprehensive consideration of influence of topography, geology and nonlinear physical mechanical properties of rock on ground stress. This method based on ...A new back-analysis method of ground stress is proposed with comprehensive consideration of influence of topography, geology and nonlinear physical mechanical properties of rock on ground stress. This method based on non-uniform rational B-spline (NURBS) technology provides the means to build a refined three-dimensional finite element model with more accurate meshing under complex terrain and geological conditions. Meanwhile, this method is a back-analysis of ground stress with combination of multivariable linear regression model and neural network (ANN) model. Firstly, the regression model is used to fit approximately boundary loads. Regarding the regressed loads as mean value, some sets of boundary loads with the same interval are constructed according to the principle of orthogonal design, to calculate the corresponding ground stress at the observation positions using finite element method. The results (boundary loads and the corresponding ground stress) are added to the samples for ANN training. And on this basis, an ANN model is established to implement higher precise back-analysis of initial ground stress. A practical application case shows that the relative error between the inversed ground stress and observed value is mostly less than 10 %, which can meet the need of engineering design and construction requirements.展开更多
The exchanges between cities and counties in the northern slope economic belt of Tianshan Mountains(NSEBTM)are increasingly frequent and the economic linkages are increasingly close,but the spatial distribution of eco...The exchanges between cities and counties in the northern slope economic belt of Tianshan Mountains(NSEBTM)are increasingly frequent and the economic linkages are increasingly close,but the spatial distribution of economic development and linkages among the cities and counties within NSEBTM is uneven.Therefore,it is of great significance to study the evolution of spatial-temporal pattern of the economic linkage network of cities and counties on NSEBTM to promote the coordinated and integrated development of the regional economy on NSEBTM.In this study,we used the modified gravity model and social network analysis method to analyze the spatio-temporal evolution characteristics of the economic linkage network structure of cities and counties on NSEBTM in 2000,2010,and 2020.The results showed that the comprehensive development quality level of cities and counties on NSEBTM increased from 2000 to 2020,its growth rate also increased,and its gap between cities and counties continued expanding.Both the spatial distribution patterns of the comprehensive development quality level of cities and counties on NSEBTM in 2000 and 2010 were presented as“high in the middle and low at both ends”,while the spatial distribution pattern of 2020 was exhibited as“high value and low value staggered”.The total amount of external economic linkages of cities and counties on NSEBTM showed an obvious upward trend,and its gap between cities and counties continued expanding,presenting a pattern of“a strong middle section and weak ends”.The direction of economic linkages of NSEBTM existed obvious central orientation and geographical proximity.The density of economic linkage network of NSEBTM increased from 2000 to 2020,and the structure of economic linkage network changed from single-core structure centered with Urumqi City to multicore structure centered with Urumqi City,Karamay City,Shihezi City,and Changji City,shifting from unbalanced development to balanced development.In the future,we should accelerate the construction of urban agglomeration on NSEBTM,cultivate a modern Urumqi metropolitan area,improve comprehensive development quality of the cities and counties at the eastern and western ends,strengthen the intensity of economic linkages between cities and counties,optimize the economic linkage network,and promote the coordinated and integrated development of regional economy.展开更多
In this paper,a 20kW vehicle built-in permanent magnet synchronous motor is taken as an example,and a magnetic barrier structure is added to the rotor of the motor to solve the uneven saturation problem of the rotor s...In this paper,a 20kW vehicle built-in permanent magnet synchronous motor is taken as an example,and a magnetic barrier structure is added to the rotor of the motor to solve the uneven saturation problem of the rotor side magnetic bridge.This structure improves the air-gap flux density waveform of the motor by influencing the internal magnetic flux path of the motor rotor,thus improving the sine of the no-load back EMF waveform of the motor and reducing the torque ripple of the motor.At the same time,Taguchi method is used to optimize the structural parameters of the added magnetic barrier.In order to facilitate the analysis of its uneven saturation phenomenon and improve the optimization effect,a simple equivalent magnetic network(EMN)model considering the uneven saturation of rotor magnetic bridge is established in this paper,and the initial values of optimization factors are selected based on this model.Finally,the no-load back EMF waveform distortion rate,torque ripple and output torque of the optimized motor are compared and analyzed,and the influence of magnetic barrier structure parameters on the electromagnetic performance of the motor is also analyzed.The results show that the optimized motor can not change the output torque of the motor as much as possible on the basis of reducing the waveform distortion rate of no-load back EMF and torque ripple.展开更多
基金supported by the National Key R&D Program of China(Grant No.2022YFB3303500).
文摘The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence.
基金by Jingzhou Science and Technology Program(2023EC45).
文摘As a key carrier supporting urban ecological health and living environment quality,urban ecological network is a key focus of current urban green space research.Jingzhou City of Hubei Province is taken as the research object.Relying on GIS technology platform,MSPA method is used to analyze the landscape pattern of Jingzhou City.On this basis,the landscape connectivity evaluation method is used to accurately identify and extract the source areas with important ecological value in Jingzhou City.Then,the normalization method and weighting method are combined to create a resistance factor evaluation system to construct the resistance surface.Based on the MCR model,the ecological network of Jingzhou City is successfully constructed,and targeted spatial optimization strategies and development suggestions are proposed.
文摘In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the modeling samples and obtain the overall information of the system;for the purpose of modeling the system or its characteristics, the artificial neural network is used to construct the model. Experiment indicates that this method can model the complex system effectively.
基金Supported by "863" Program of P. R. China(2002AA2Z4291)
文摘Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, combining neural network with the partial least square method. Dealt with independent variables by the partial least square method, it can not only solve the relationship between independent variables but also reduce the input dimensions in neural network model, and then use the neural network which can solve the non-linear problem better. The result of an example shows that the prediction has higher precision in forecasting and fitting.
基金Supported by National Key R&D Program of China(Grant No.2022YFB4701200)National Natural Science Foundation of China(NSFC)(Grant Nos.T2121003,52205004).
文摘The lower limb exoskeletons are used to assist wearers in various scenarios such as medical and industrial settings.Complex modeling errors of the exoskeleton in different application scenarios pose challenges to the robustness and stability of its control algorithm.The Radial Basis Function(RBF)neural network is used widely to compensate for modeling errors.In order to solve the problem that the current RBF neural network controllers cannot guarantee the asymptotic stability,a neural network robust control algorithm based on computed torque method is proposed in this paper,focusing on trajectory tracking.It innovatively incorporates the robust adaptive term while introducing the RBF neural network term,improving the compensation ability for modeling errors.The stability of the algorithm is proved by Lyapunov method,and the effectiveness of the robust adaptive term is verified by the simulation.Experiments wearing the exoskeleton under different walking speeds and scenarios were carried out,and the results show that the absolute value of tracking errors of the hip and knee joints of the exoskeleton are consistently less than 1.5°and 2.5°,respectively.The proposed control algorithm effectively compensates for modeling errors and exhibits high robustness.
基金This work was supported by the Kyonggi University Research Grant 2022.
文摘Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets.
文摘Lampreys, as an important participant in the ecosystem, play an irreplaceable role in the stability of nature. A variety of models were used to simulate ecosystems and food webs, and the dynamic evolution of multiple populations was solved. The temporal changes of the biomass and the health of the ecosystem affected by the population of Lampreys in other ecological niches were solved. For problem 1, Firstly, a simple natural ecosystem is simulated based on the threshold model and BP neural network model. The dynamic change of the sex ratio of lampreys population and the fluctuation of ecosystem health value were found to generate time series maps. Lampreys overprey on low-niche animals, which damages the overall stability of the ecosystem. For problem 2, We used the Lotka-Volterra model to construct ecological competition between lampreys and primary consumers and predators. Then, the Lotka-Volterra equations were solved, and a control group without gender shift function was set up, which reflected the advantages and disadvantages of the sex-regulated characteristics of lampreys in the natural environment. For problem 3, The ecosystem model established in question 1 was further deepened, and the food web was simulated by the Beverton-Holt model and the Logistic time-dependent differential equations model. The parameters of the food web model were input into the neurons of the ecosystem model, and the two models were integrated to form an overall biosphere model. The output layer of the ecosystem neural network was input into the food web Beverton-Holt and Logistic differential equations, and finally, the three-dimensional analytical solution was obtained by numerical simulation. Then Euler method is used to obtain the exact value of the solution surface. The Random forest model was used to predict the future development of lampreys and other ecological niches. For problem 4, By investigating relevant literature, we normalized the populations of lampreys and a variety of fish as well as other ecological niche animals, plants and microorganisms in the same water area, set different impact weights of lampreys, constructed weight evaluation matrix, and obtained positive and negative ideal solution vectors and negative correlation proximity by using TOPSIS comprehensive evaluation method. It is concluded that many kinds of fish are greatly affected by the sex regulation of lampreys.
基金supported by National Natural Science Foundation of China (Grant No. 60879002)Tianjin Municipal Science and Technology Support Plan of China (Grant No. 10ZCKFGX03800)
文摘Fatigue life and reliability of aero-engine blade are always of important significance to flight safety.The establishment of damage model is one of the key factors in blade fatigue research.Conventional linear Miner's sum method is not suitable for aero-engine because of its low accuracy.A back propagation neutral network(BPNN) based on the combination of Levenberg-Marquardt(LM) and finite element method(FEM) is used to describe process of nonlinear damage accumulation behavior in material and predict fatigue life of the blade.Fatigue tests of standard specimen made from TC4 are carried out to obtain material fatigue parameters and S-N curve.A nonlinear continuum damage model(CDM),based on the BPNN with one hidden layer and ten neurons,is built to investigate the nonlinear damage accumulation behavior,in which the results from the tests are used as training set.Comparing with linear models and previous nonlinear models,BPNN has the lowest calculation error in full load range.It has significant accuracy when the load is below 500 MPa.Especially,when the load is 350 MPa,the calculation error of the BPNN is only 0.4%.The accurate model of the blade is built by using 3D coordinate measurement technology.The loading cycle in fatigue analysis is defined from takeoff to cruise in 10 min,and the load history is obtained from finite element analysis(FEA).Then the fatigue life of the compressor blade is predicted by using the BPNN model.The final fatigue life of the aero-engine blade is 6.55 104 cycles(10 916 h) based on the BPNN model,which is effective for the virtual design of aero-engine blade.
文摘Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlights an integrated approach of designing overhanging rock slopes where the relative dimensions of the slope exceed the scale of fracturing and the rock mass failure needs to be considered rather than kinematic release of individual blocks. The key to the method is a simplified limit equilibrium(LE) tool that was used for the support design and analysis of a multi-faceted overhanging rock slope. The overhanging slopes required complex geometries with constantly changing orientations. The overhanging rock varied in height from 30 m to 66 m. Geomechanical modelling combined with discrete fracture network(DFN)representation of the rock mass was used to validate the rock mass strength assumptions and the failure mechanism assumed in the LE model. The advantage of the simplified LE method is that buttress and support design iterations(along with sensitivity analysis of design parameters) can be completed for various cross-sections along the proposed overhanging rock sections in an efficient manner, compared to the more time-intensive, sophisticated methods that were used for the initial validation. The method described presents the development of this design tool and assumptions made for a specific overhanging rock slope design. Other locations will have different geological conditions that can control the potential behaviour of rock slopes, however, the approach presented can be applied as a general guiding design principle for overhanging rock cut slope.
基金Project supported by the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20161278)
文摘In this paper, we made a new breakthrough, which proposes a new recursion–transform(RT) method with potential parameters to evaluate the nodal potential in arbitrary resistor networks. For the first time, we found the exact potential formulae of arbitrary m × n cobweb and fan networks by the RT method, and the potential formulae of infinite and semi-infinite networks are derived. As applications, a series of interesting corollaries of potential formulae are given by using the general formula, the equivalent resistance formula is deduced by using the potential formula, and we find a new trigonometric identity by comparing two equivalence results with different forms.
基金supported by the National Natural Science Foundation of China (No.21273209)
文摘Ulcerative colitis, an inflammatory bowel disease, is a chronic inflammatory disorder that results in ulcers of the colon and rectum without known etiology. Ulcerative colitis causes a huge public health care burden particularly in developed countries. Many studies suggest that ulcerative colitis results from an abnormal immune response against components of cornrnensal rnicrobiota in genetically susceptible individuals. However, understanding of the disease mechanisms at cellular and molecular levels remains largely elusive. In this paper, a network model is developed based on our previous study and computer simulations are perforrned using an agent-based network modeling to elucidate the dynamics of immune response in ulcerative colitis progression. Our modeling study identifies several important positive feedback loops as a driving force for ulcerative colitis initiation and progression. The results demonstrate that although immune response in ulcerative colitis patients is dominated by anti-inflarnrnatory/regulatory cells such as alternatively activated rnacrophages and type II natural killer T cells, proinflarnrnatory cells including classically activated rnacrophages, T helper 1 and T helper 17 cells, and their secreted cytokines tumor necrosis factor-α, interleukin-12, interleukin-23, interleukin-17 and interferon-γ remain at certain levels (lower than those in Crohn's disease, another inflammatory bowel disease). Long-terrn exposure to these proinflarnrnatory components, causes rnucosal tissue damage persistently, leading to ulcerative colitis. Our simulation results are qualitatively in agreement with clinical and laboratory measurements, offering novel insight into the disease mechanisms.
基金supported by China 973 Program (2014CB340600)NSF(60903175,61272405, 61272033,and 61272451)University Innovation Foundation(2013TS102 and 2013TS106)
文摘Due to the enormous harm of virus propagation,research regarding virus immunizations still absolutely necessary.In comparison to current researches,a new virus immunization method the hierarchical virus immunization method(HVIM) for community networks is proposed.Based on the virus transmission dynamic model SusceptibleInfectious-Removed and SusceptibleRemoved(SIRSR),HVIM considered the influence of external factors on the spread of viruses and only needs a portion of the network structure to be able to carry out immunization.Another pro for HVIM is that it is scalable and suitable for parallel computing which is a requirement in the big data era.Finally,a simulation dataset and a real dataset were used to run experiments,and the results of simulation showed that HVIM obviously is superior to others on the aspect of immunity.
基金supported by the National Key Research and Development Program on Monitoring,Early Warning and Prevention of Major Natural Disasters [grant number 2018YFC1506006]the National Natural Science Foundation of China [grant numbers 41805054 and U20A2097]。
文摘Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network(BPNN)with synoptic diagnosis for predicting rainstorms,and analyzes the hit rates of rainstorms for the above two methods using the county of Tianquan as a case study.Results showed that the traditional synoptic diagnosis method still has an important referential meaning for most rainstorm types through synoptic typing and statistics of physical quantities based on historical cases,and the threat score(TS)of rainstorms was more than 0.75.However,the accuracy for two rainstorm types influenced by low-level easterly inverted troughs was less than 40%.The BPNN method efficiently forecasted these two rainstorm types;the TS and equitable threat score(ETS)of rainstorms were 0.80 and 0.79,respectively.The TS and ETS of the hybrid model that combined the BPNN and synoptic diagnosis methods exceeded the forecast score of multi-numerical simulations over the Sichuan Basin without exception.This kind of hybrid model enhanced the forecasting accuracy of rainstorms.The findings of this study provide certain reference value for the future development of refined forecast models with local features.
文摘The models of noallnear systems are idendried by recmeive pedctive ermrs(RPE) methed based on thelayered neural networks. To improve the identification precision, gain callcient and arentUm factor are itheucedinto the algorithm for the data are dids by noses and vny suddnly. this lerthm is applied to the twcmedeiling of rolling and pitchng angles of ndssiles. Simulation results shoW tha the proposed algurithm is sultable forthe modelling of nodrinear systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11871400 and 11971386)the Natural Science Foundation of Shaanxi Province,China(Grant No.2017JM1019).
文摘The work studies model reduction method for nonlinear systems based on proper orthogonal decomposition (POD)and discrete empirical interpolation method (DEIM). Instead of using the classical DEIM to directly approximate thenonlinear term of a system, our approach extracts the main part of the nonlinear term with a linear approximation beforeapproximating the residual with the DEIM. We construct the linear term by Taylor series expansion and dynamic modedecomposition (DMD), respectively, so as to obtain a more accurate reconstruction of the nonlinear term. In addition, anovel error prediction model is devised for the POD-DEIM reduced systems by employing neural networks with the aid oferror data. The error model is cheaply computable and can be adopted as a remedy model to enhance the reduction accuracy.Finally, numerical experiments are performed on two nonlinear problems to show the performance of the proposed method.
基金Supported by the National Natural Science Foundation of China (61772159)
文摘Ventilation characteristic parameters are the base of ventilation network solution; however, they are apt to be affected by operating errors, reading errors, airflow stability, and other factors, and it is difficult to obtain accurate results. In order to check the ventilation characteristic parameters of mines more accurately, the integrated method of circuit and path is adopted to overcome the drawbacks caused by the traditional path method or circuit method in the digital debugging process of ventilation system, which can improve the large local error or the inconsistency between the airflow direction and the actual situation caused by inaccuracy of the ventilation characteristic parameters or checking in the ventilation network solution. The results show that this method can effectively reduce the local error and prevent the pseudo-airflow reversal phenomenon; in addition, the solution results are consistent with the actual situation of mines, and the effect is obvious.
基金The National High Technology Research and Development Program of China (863 Program) (No.2003AA517020)
文摘This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was too complicated to be used in a control system. Consequently, an off line radial basis function (RBF) network was introduced to build a nonlinear predictive model. And then, the optimal control sequences were obtained by applying golden mean method. The models and controller have been realized in the MATLAB environment. Simulation results indicate the proposed algorithm exhibits satisfying control effect even when the current densities vary largely.
基金Innovative Research Groups of the National Natural Science Foundation of China (No.51021004)National Science Foundation of China (No. 51079096)Program for New Century Excellent Talents in University (No. NCET-08-0391)
文摘A new back-analysis method of ground stress is proposed with comprehensive consideration of influence of topography, geology and nonlinear physical mechanical properties of rock on ground stress. This method based on non-uniform rational B-spline (NURBS) technology provides the means to build a refined three-dimensional finite element model with more accurate meshing under complex terrain and geological conditions. Meanwhile, this method is a back-analysis of ground stress with combination of multivariable linear regression model and neural network (ANN) model. Firstly, the regression model is used to fit approximately boundary loads. Regarding the regressed loads as mean value, some sets of boundary loads with the same interval are constructed according to the principle of orthogonal design, to calculate the corresponding ground stress at the observation positions using finite element method. The results (boundary loads and the corresponding ground stress) are added to the samples for ANN training. And on this basis, an ANN model is established to implement higher precise back-analysis of initial ground stress. A practical application case shows that the relative error between the inversed ground stress and observed value is mostly less than 10 %, which can meet the need of engineering design and construction requirements.
基金supported by the Ministry of Science and Technology of the People’s Republic of China(2021xjkk0905).
文摘The exchanges between cities and counties in the northern slope economic belt of Tianshan Mountains(NSEBTM)are increasingly frequent and the economic linkages are increasingly close,but the spatial distribution of economic development and linkages among the cities and counties within NSEBTM is uneven.Therefore,it is of great significance to study the evolution of spatial-temporal pattern of the economic linkage network of cities and counties on NSEBTM to promote the coordinated and integrated development of the regional economy on NSEBTM.In this study,we used the modified gravity model and social network analysis method to analyze the spatio-temporal evolution characteristics of the economic linkage network structure of cities and counties on NSEBTM in 2000,2010,and 2020.The results showed that the comprehensive development quality level of cities and counties on NSEBTM increased from 2000 to 2020,its growth rate also increased,and its gap between cities and counties continued expanding.Both the spatial distribution patterns of the comprehensive development quality level of cities and counties on NSEBTM in 2000 and 2010 were presented as“high in the middle and low at both ends”,while the spatial distribution pattern of 2020 was exhibited as“high value and low value staggered”.The total amount of external economic linkages of cities and counties on NSEBTM showed an obvious upward trend,and its gap between cities and counties continued expanding,presenting a pattern of“a strong middle section and weak ends”.The direction of economic linkages of NSEBTM existed obvious central orientation and geographical proximity.The density of economic linkage network of NSEBTM increased from 2000 to 2020,and the structure of economic linkage network changed from single-core structure centered with Urumqi City to multicore structure centered with Urumqi City,Karamay City,Shihezi City,and Changji City,shifting from unbalanced development to balanced development.In the future,we should accelerate the construction of urban agglomeration on NSEBTM,cultivate a modern Urumqi metropolitan area,improve comprehensive development quality of the cities and counties at the eastern and western ends,strengthen the intensity of economic linkages between cities and counties,optimize the economic linkage network,and promote the coordinated and integrated development of regional economy.
基金supported by the National Natural Science Funds of China No.51907129Technology program of Liaoning province No.2021-MS-236。
文摘In this paper,a 20kW vehicle built-in permanent magnet synchronous motor is taken as an example,and a magnetic barrier structure is added to the rotor of the motor to solve the uneven saturation problem of the rotor side magnetic bridge.This structure improves the air-gap flux density waveform of the motor by influencing the internal magnetic flux path of the motor rotor,thus improving the sine of the no-load back EMF waveform of the motor and reducing the torque ripple of the motor.At the same time,Taguchi method is used to optimize the structural parameters of the added magnetic barrier.In order to facilitate the analysis of its uneven saturation phenomenon and improve the optimization effect,a simple equivalent magnetic network(EMN)model considering the uneven saturation of rotor magnetic bridge is established in this paper,and the initial values of optimization factors are selected based on this model.Finally,the no-load back EMF waveform distortion rate,torque ripple and output torque of the optimized motor are compared and analyzed,and the influence of magnetic barrier structure parameters on the electromagnetic performance of the motor is also analyzed.The results show that the optimized motor can not change the output torque of the motor as much as possible on the basis of reducing the waveform distortion rate of no-load back EMF and torque ripple.