To a multibeam echo sounder system (MBES), under water sound refraction plays an important role in depth measure- ment accuracy, and errors in sound velocity profile lead to inaccuracies in the measured depth (especia...To a multibeam echo sounder system (MBES), under water sound refraction plays an important role in depth measure- ment accuracy, and errors in sound velocity profile lead to inaccuracies in the measured depth (especially for outer beams). A method is developed to estimate the sound velocity profile based on the depth measured by vertical beam. Using this depth and other pa- rameters, such as t (sound pulse propagation time), θ (beam inclination angle), etc. We can estimate a simple sound velocity profile with which the depth error has been reduced. This method has been tested with a real dataset acquired in the East China Sea.展开更多
High-resolution approaches such as multiple signal classification and estimation of signal parameters via rotational invariance techniques(ESPRIT) are currently employed widely in multibeam echo-sounder(MBES)syste...High-resolution approaches such as multiple signal classification and estimation of signal parameters via rotational invariance techniques(ESPRIT) are currently employed widely in multibeam echo-sounder(MBES)systems for sea floor bathymetry,where a uniform line array is also required.However,due to the requirements in terms of the system coverage/resolution and installation space constraints,an MBES system usually employs a receiving array with a special shape,which means that high-resolution algorithms cannot be applied directly.In addition,the short-term stationary echo signals make it difficult to estimate the covariance matrix required by the high-resolution approaches,which further increases the complexity when applying the high-resolution algorithms in the MBES systems.The ESPRIT with multiple-angle subarray beamforming is employed to reduce the requirements in terms of the signal-to-noise ratio,number of snapshots,and computational effort.The simulations show that the new processing method can provide better fine-structure resolution.Then a highresolution bottom detection(HRBD) algorithm is developed by combining the new processing method with virtual array transformation.The application of the HRBD algorithm to a U-shaped array is also discuss.The computer simulations and experimental data processing results verify the effectiveness of the proposed algorithm.展开更多
The sound ray tracing method can achieve higher accuracy in determining depths and plan positions with multibeam echo sounding system. In data processing, actual sound speed profile must be used in the method. However...The sound ray tracing method can achieve higher accuracy in determining depths and plan positions with multibeam echo sounding system. In data processing, actual sound speed profile must be used in the method. However, the method is too complicated. In order to overcome the shortcoming, this paper presents a new method, the position correction method. Two situations are considered in the new method, namely, change of sound velocity keeps constant gradient in whole water column (including N layers) or in different water layer.展开更多
在多波束测深系统的换能器安装与使用过程中,由于无法保证换能器坐标系统与船体坐标系统完全重合,因此必须进行横摇、纵倾以及航向偏差校准与改正,使两者坐标系统相一致。详细分析了多波束测深系统换能器安装校准的原理和方法,以"...在多波束测深系统的换能器安装与使用过程中,由于无法保证换能器坐标系统与船体坐标系统完全重合,因此必须进行横摇、纵倾以及航向偏差校准与改正,使两者坐标系统相一致。详细分析了多波束测深系统换能器安装校准的原理和方法,以"亚美通道"海底光缆路由调查中,挪威Simrad EM 3000多波束测深系统的安装与校准为例,阐述了其安装校准方法及在海底地形测量中的应用。展开更多
基于收集到的东太平洋海隆北段Juan de Fuca Ridge热液活动区的高精度多波束声纳数据,应用加权移动平均算法,生成典型的高精度海底DTM;应用声纳图像处理技术,生成高分辨率海底声纳镶嵌图,并对其海底地形及海底声学图像进行处理和分析。...基于收集到的东太平洋海隆北段Juan de Fuca Ridge热液活动区的高精度多波束声纳数据,应用加权移动平均算法,生成典型的高精度海底DTM;应用声纳图像处理技术,生成高分辨率海底声纳镶嵌图,并对其海底地形及海底声学图像进行处理和分析。通过处理与分析,对JFR热液区海底地形地貌特征有了初步认识,对于我国大洋调查和海底热液区探测具有一定的借鉴作用。展开更多
Poyang Lake in the Changjiang(Yangtze)River catchment has undergone frequent spring drought since 2003,and some researchers attributed this phenomenon to sand mining and the lakebed deformation in the outlet channel l...Poyang Lake in the Changjiang(Yangtze)River catchment has undergone frequent spring drought since 2003,and some researchers attributed this phenomenon to sand mining and the lakebed deformation in the outlet channel linking the lake with Changjiang River main channel.However,there is still a lack of high-resolution subaqueous geomorphological evidence of how sand mining led to lakebed deformation in the outlet channel.We examined the bed morphology and sub-bottom sedimentary structure of the outlet channel,using a multibeam echo sounder and sub-bottom profi ler in Poyang Lake.We found that:(1)the subaqueous micro-topography types of the outlet channel are characterized by sand mining disturbance,natural erosional topography,and fl at bed and dunes,accounting for 44.9%,21.4%,28.6%,and 5.1%of the channel area,respectively;and(2)sand mining activity aff ects the local bed topography extensively and signifi cantly.The depth of sandpits caused by sand mining varied from 1.4 m to 12 m deeper than the surrounding bed surface,with 4.41 m of depth increase on average.Hence,the large-scale high-intensity sand mining activities and their signifi cant geomorphic eff ects demand for an improved assessment for future management and longer-term sustainability.Because of the large-scale and ongoing high-intensity sand mining activities in the Poyang Lake outlet channel,these eff ects should raise caution in the future and contribute to monitoring eff orts that are essential to implement sustainable management solutions.The present study and techniques implemented can serve as a scientifi c reference for dam construction and sand mining within the Poyang Lake basin.展开更多
基金funded by the National High Technology Research and Development Program of China('863'Program)under contract Nos.2004AA616080 and 2006AA09ZI03the National Natural Science Foundation of China(Project code:40606026).
文摘To a multibeam echo sounder system (MBES), under water sound refraction plays an important role in depth measure- ment accuracy, and errors in sound velocity profile lead to inaccuracies in the measured depth (especially for outer beams). A method is developed to estimate the sound velocity profile based on the depth measured by vertical beam. Using this depth and other pa- rameters, such as t (sound pulse propagation time), θ (beam inclination angle), etc. We can estimate a simple sound velocity profile with which the depth error has been reduced. This method has been tested with a real dataset acquired in the East China Sea.
基金The National Natural Science Foundation of China under contract No.41706066the National Key R&D Program of China under contract No.2016YFC1400200the China-ASEAN Maritime Cooperation Fund
文摘High-resolution approaches such as multiple signal classification and estimation of signal parameters via rotational invariance techniques(ESPRIT) are currently employed widely in multibeam echo-sounder(MBES)systems for sea floor bathymetry,where a uniform line array is also required.However,due to the requirements in terms of the system coverage/resolution and installation space constraints,an MBES system usually employs a receiving array with a special shape,which means that high-resolution algorithms cannot be applied directly.In addition,the short-term stationary echo signals make it difficult to estimate the covariance matrix required by the high-resolution approaches,which further increases the complexity when applying the high-resolution algorithms in the MBES systems.The ESPRIT with multiple-angle subarray beamforming is employed to reduce the requirements in terms of the signal-to-noise ratio,number of snapshots,and computational effort.The simulations show that the new processing method can provide better fine-structure resolution.Then a highresolution bottom detection(HRBD) algorithm is developed by combining the new processing method with virtual array transformation.The application of the HRBD algorithm to a U-shaped array is also discuss.The computer simulations and experimental data processing results verify the effectiveness of the proposed algorithm.
文摘The sound ray tracing method can achieve higher accuracy in determining depths and plan positions with multibeam echo sounding system. In data processing, actual sound speed profile must be used in the method. However, the method is too complicated. In order to overcome the shortcoming, this paper presents a new method, the position correction method. Two situations are considered in the new method, namely, change of sound velocity keeps constant gradient in whole water column (including N layers) or in different water layer.
文摘在多波束测深系统的换能器安装与使用过程中,由于无法保证换能器坐标系统与船体坐标系统完全重合,因此必须进行横摇、纵倾以及航向偏差校准与改正,使两者坐标系统相一致。详细分析了多波束测深系统换能器安装校准的原理和方法,以"亚美通道"海底光缆路由调查中,挪威Simrad EM 3000多波束测深系统的安装与校准为例,阐述了其安装校准方法及在海底地形测量中的应用。
文摘基于收集到的东太平洋海隆北段Juan de Fuca Ridge热液活动区的高精度多波束声纳数据,应用加权移动平均算法,生成典型的高精度海底DTM;应用声纳图像处理技术,生成高分辨率海底声纳镶嵌图,并对其海底地形及海底声学图像进行处理和分析。通过处理与分析,对JFR热液区海底地形地貌特征有了初步认识,对于我国大洋调查和海底热液区探测具有一定的借鉴作用。
基金Supported by the Comprehensive survey of the geological environment along the Changjiang River(No.DD20190260)the Natural Science Foundation of Shandong Province(No.ZR2020QD083)the Postdoctoral Science Foundation(No.2018M642693)。
文摘Poyang Lake in the Changjiang(Yangtze)River catchment has undergone frequent spring drought since 2003,and some researchers attributed this phenomenon to sand mining and the lakebed deformation in the outlet channel linking the lake with Changjiang River main channel.However,there is still a lack of high-resolution subaqueous geomorphological evidence of how sand mining led to lakebed deformation in the outlet channel.We examined the bed morphology and sub-bottom sedimentary structure of the outlet channel,using a multibeam echo sounder and sub-bottom profi ler in Poyang Lake.We found that:(1)the subaqueous micro-topography types of the outlet channel are characterized by sand mining disturbance,natural erosional topography,and fl at bed and dunes,accounting for 44.9%,21.4%,28.6%,and 5.1%of the channel area,respectively;and(2)sand mining activity aff ects the local bed topography extensively and signifi cantly.The depth of sandpits caused by sand mining varied from 1.4 m to 12 m deeper than the surrounding bed surface,with 4.41 m of depth increase on average.Hence,the large-scale high-intensity sand mining activities and their signifi cant geomorphic eff ects demand for an improved assessment for future management and longer-term sustainability.Because of the large-scale and ongoing high-intensity sand mining activities in the Poyang Lake outlet channel,these eff ects should raise caution in the future and contribute to monitoring eff orts that are essential to implement sustainable management solutions.The present study and techniques implemented can serve as a scientifi c reference for dam construction and sand mining within the Poyang Lake basin.