Underwater terrain-aided navigation is used to complement the traditional inertial navigation employed by autonomous underwater vehicles during lengthy missions. It can provide fixed estimations by matching real-time ...Underwater terrain-aided navigation is used to complement the traditional inertial navigation employed by autonomous underwater vehicles during lengthy missions. It can provide fixed estimations by matching real-time depth data with a digital terrain map, This study presents the concept of using image processing techniques in the underwater terrain matching process. A traditional gray-scale histogram of an image is enriched by incorporation with spatial information in pixels. Edge comer pixels are then defined and used to construct an edge comer histogram, which employs as a template to scan the digital terrain map and estimate the fixes of the vehicle by searching the correlation peak. Simulations are performed to investigate the robustness of the proposed method, particularly in relation to its sensitivity to background noise, the scale of real-time images, and the travel direction of the vehicle. At an image resolution of 1 m2/pixel, the accuracy of localization is more than 10 meters.展开更多
This paper presents a seafloor classification method of multibeam sonar data, based on the use of Adaptive Resonance Theory (ART) neural networks. A general ART-based neural network, Fuzzy ARTMAP, has been proposed ...This paper presents a seafloor classification method of multibeam sonar data, based on the use of Adaptive Resonance Theory (ART) neural networks. A general ART-based neural network, Fuzzy ARTMAP, has been proposed for seafloor classification of multibeam sonar data. An evolutionary strategy was used to generate new training samples near the cluster boundaries of the neural network, therefore the weights can be revised and refined by supervised learning. The proposed method resolves the training problem for Fuzzy ARTMAP neural networks, which are applied to seafloor classification of multibeam sonar data when there are less than adequate ground-troth samples. The results were synthetically analyzed in comparison with the standard Fuzzy ARTMAP network and a conventional Bayesian classifier. The conclusion can be drawn that Fuzzy ARTMAP neural networks combining with GA algorithms can be alternative powerful tools for seafloor classification of multibeam sonar data.展开更多
The multibeam sonars can provide hydrographic quality depth data as well as hold the potential to provide calibrated measurements of the seafloor acoustic backscattering strength. There has been much interest in utili...The multibeam sonars can provide hydrographic quality depth data as well as hold the potential to provide calibrated measurements of the seafloor acoustic backscattering strength. There has been much interest in utilizing backscatters and images from multibeam sonar for seabed type identification and most results are obtained. This paper has presented a focused review of several main methods and recent developments of seafloor classification utilizing multibeam sonar data or/and images. These are including the power spectral analysis methods, the texture analysis, traditional Bayesian classification theory and the most active neural network approaches.展开更多
For increasing the cross-track resolution, the multiple input multiple output (MIMO) technique is introduced into the swath bathymetry system and a new swath bathymetry approach using MIMO sonar is proposed. The MIM...For increasing the cross-track resolution, the multiple input multiple output (MIMO) technique is introduced into the swath bathymetry system and a new swath bathymetry approach using MIMO sonar is proposed. The MIMO sonar is composed of two parallel transmitting uniform linear arrays (ULAs) and a receiving ULA which is perpendicular to the former. The spacing between the two transmitting ULAs is equal to the product of the receiving sensor number and the receiving inter-sensor spacing. Furthermore, two narrowband linear frequency modulation (LFM) pulses, sharing the same frequency band but with opposite modulation slopes, are used as transmitting waveforms of the two transmitting ULAs. With such an array layout and transmitting signals, the MIMO sonar can sound a swath with the cross-track resolution doubling that of the traditional multibeam sonar using a Mills cross array. Numerical examples are provided to verify the effectiveness of the proposed approach.展开更多
Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the...Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the seafloor has been precisely modeled to date,and there is an urgent need to improve the accuracy and reduce the uncertainty of underwater survey data.In this study,we introduce a pretrained visual geometry group network(VGGNet)method based on deep learning.To apply this method,we input gravity anomaly data derived from ship measurements and satellite altimetry into the model and correct the latter,which has a larger spatial coverage,based on the former,which is considered the true value and is more accurate.After obtaining the corrected high-precision gravity model,it is inverted to the corresponding bathymetric model by applying the gravity-depth correlation.We choose four data pairs collected from different environments,i.e.,the Southern Ocean,Pacific Ocean,Atlantic Ocean and Caribbean Sea,to evaluate the topographic correction results of the model.The experiments show that the coefficient of determination(R~2)reaches 0.834 among the results of the four experimental groups,signifying a high correlation.The standard deviation and normalized root mean square error are also evaluated,and the accuracy of their performance improved by up to 24.2%compared with similar research done in recent years.The evaluation of the R^(2) values at different water depths shows that our model can achieve performance results above 0.90 at certain water depths and can also significantly improve results from mid-water depths when compared to previous research.Finally,the bathymetry corrected by our model is able to show an accuracy improvement level of more than 21%within 1%of the total water depths,which is sufficient to prove that the VGGNet-based method has the ability to perform a gravity-bathymetry correction and achieve outstanding results.展开更多
基金Supported by the National Natural Nature Science Foundation of China (Grant No. 41376102), Fundamental Research Funds for the Central Universities (Gant No. HEUCF150514) and Chinese Scholarship Council (Grant No. 201406680029).
文摘Underwater terrain-aided navigation is used to complement the traditional inertial navigation employed by autonomous underwater vehicles during lengthy missions. It can provide fixed estimations by matching real-time depth data with a digital terrain map, This study presents the concept of using image processing techniques in the underwater terrain matching process. A traditional gray-scale histogram of an image is enriched by incorporation with spatial information in pixels. Edge comer pixels are then defined and used to construct an edge comer histogram, which employs as a template to scan the digital terrain map and estimate the fixes of the vehicle by searching the correlation peak. Simulations are performed to investigate the robustness of the proposed method, particularly in relation to its sensitivity to background noise, the scale of real-time images, and the travel direction of the vehicle. At an image resolution of 1 m2/pixel, the accuracy of localization is more than 10 meters.
文摘This paper presents a seafloor classification method of multibeam sonar data, based on the use of Adaptive Resonance Theory (ART) neural networks. A general ART-based neural network, Fuzzy ARTMAP, has been proposed for seafloor classification of multibeam sonar data. An evolutionary strategy was used to generate new training samples near the cluster boundaries of the neural network, therefore the weights can be revised and refined by supervised learning. The proposed method resolves the training problem for Fuzzy ARTMAP neural networks, which are applied to seafloor classification of multibeam sonar data when there are less than adequate ground-troth samples. The results were synthetically analyzed in comparison with the standard Fuzzy ARTMAP network and a conventional Bayesian classifier. The conclusion can be drawn that Fuzzy ARTMAP neural networks combining with GA algorithms can be alternative powerful tools for seafloor classification of multibeam sonar data.
文摘The multibeam sonars can provide hydrographic quality depth data as well as hold the potential to provide calibrated measurements of the seafloor acoustic backscattering strength. There has been much interest in utilizing backscatters and images from multibeam sonar for seabed type identification and most results are obtained. This paper has presented a focused review of several main methods and recent developments of seafloor classification utilizing multibeam sonar data or/and images. These are including the power spectral analysis methods, the texture analysis, traditional Bayesian classification theory and the most active neural network approaches.
基金supported by the National Natural Science Foundation of China(11104222)the Doctorate Foundation of Northwestern Polytechnical University(CX201101)
文摘For increasing the cross-track resolution, the multiple input multiple output (MIMO) technique is introduced into the swath bathymetry system and a new swath bathymetry approach using MIMO sonar is proposed. The MIMO sonar is composed of two parallel transmitting uniform linear arrays (ULAs) and a receiving ULA which is perpendicular to the former. The spacing between the two transmitting ULAs is equal to the product of the receiving sensor number and the receiving inter-sensor spacing. Furthermore, two narrowband linear frequency modulation (LFM) pulses, sharing the same frequency band but with opposite modulation slopes, are used as transmitting waveforms of the two transmitting ULAs. With such an array layout and transmitting signals, the MIMO sonar can sound a swath with the cross-track resolution doubling that of the traditional multibeam sonar using a Mills cross array. Numerical examples are provided to verify the effectiveness of the proposed approach.
基金The National Key R&D Program of China under contract Nos 2022YFC3003800,2020YFC1521700 and 2020YFC1521705the National Natural Science Foundation of China under contract No.41830540+3 种基金the Open Fund of the East China Coastal Field Scientific Observation and Research Station of the Ministry of Natural Resources under contract No.OR-SECCZ2022104the Deep Blue Project of Shanghai Jiao Tong University under contract No.SL2020ZD204the Special Funding Project for the Basic Scientific Research Operation Expenses of the Central Government-Level Research Institutes of Public Interest of China under contract No.SZ2102the Zhejiang Provincial Project under contract No.330000210130313013006。
文摘Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the seafloor has been precisely modeled to date,and there is an urgent need to improve the accuracy and reduce the uncertainty of underwater survey data.In this study,we introduce a pretrained visual geometry group network(VGGNet)method based on deep learning.To apply this method,we input gravity anomaly data derived from ship measurements and satellite altimetry into the model and correct the latter,which has a larger spatial coverage,based on the former,which is considered the true value and is more accurate.After obtaining the corrected high-precision gravity model,it is inverted to the corresponding bathymetric model by applying the gravity-depth correlation.We choose four data pairs collected from different environments,i.e.,the Southern Ocean,Pacific Ocean,Atlantic Ocean and Caribbean Sea,to evaluate the topographic correction results of the model.The experiments show that the coefficient of determination(R~2)reaches 0.834 among the results of the four experimental groups,signifying a high correlation.The standard deviation and normalized root mean square error are also evaluated,and the accuracy of their performance improved by up to 24.2%compared with similar research done in recent years.The evaluation of the R^(2) values at different water depths shows that our model can achieve performance results above 0.90 at certain water depths and can also significantly improve results from mid-water depths when compared to previous research.Finally,the bathymetry corrected by our model is able to show an accuracy improvement level of more than 21%within 1%of the total water depths,which is sufficient to prove that the VGGNet-based method has the ability to perform a gravity-bathymetry correction and achieve outstanding results.