Self-similar behavior for the multicomponent coagulation system is investigated analytically in this paper. Asymptotic self-similar solutions for the constant kernel, sum kernel, and product kernel are achieved by int...Self-similar behavior for the multicomponent coagulation system is investigated analytically in this paper. Asymptotic self-similar solutions for the constant kernel, sum kernel, and product kernel are achieved by introduction of different generating functions. In these solutions, two size-scale variables are introduced to characterize the asymptotic distribution of total mass and individual masses. The result of product kernel (gelling kernel) is consistent with the Vigli-Ziff conjecture to some extent. Furthermore, the steady-state solution with injection for the constant kernel is obtained, which is again the product of a normal distribution and the scaling solution for the single variable coagulation.展开更多
In this article, we obtain explicit solutions of a linear PDE subject to a class of ra-dial square integrable functions with a monotonically increasing weight function|x|n-1eβ|x|2/2,β ≥ 0, x ∈ Rn. This linear ...In this article, we obtain explicit solutions of a linear PDE subject to a class of ra-dial square integrable functions with a monotonically increasing weight function|x|n-1eβ|x|2/2,β ≥ 0, x ∈ Rn. This linear PDE is obtained from a system of forced Burgers equation via the Cole-Hopf transformation. For any spatial dimension n>1, the solution is expressed in terms of a family of weighted generalized Laguerre polynomials. We also discuss the large time behaviour of the solution of the system of forced Burgers equation.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11272196 and11222222)the Zhejiang Association of Science and Technology of Soft Science Research Project(No.ZJKX14C-34)
文摘Self-similar behavior for the multicomponent coagulation system is investigated analytically in this paper. Asymptotic self-similar solutions for the constant kernel, sum kernel, and product kernel are achieved by introduction of different generating functions. In these solutions, two size-scale variables are introduced to characterize the asymptotic distribution of total mass and individual masses. The result of product kernel (gelling kernel) is consistent with the Vigli-Ziff conjecture to some extent. Furthermore, the steady-state solution with injection for the constant kernel is obtained, which is again the product of a normal distribution and the scaling solution for the single variable coagulation.
基金supported by Research Grants of National Board for Higher Mathematics(Award No:2/40(13)/2010-R&D-II/8911)UGC’s Dr.D.S.Kothari Fellowship(Award No.F.4-2/2006(BSR)/13-440/2011(BSR))
文摘In this article, we obtain explicit solutions of a linear PDE subject to a class of ra-dial square integrable functions with a monotonically increasing weight function|x|n-1eβ|x|2/2,β ≥ 0, x ∈ Rn. This linear PDE is obtained from a system of forced Burgers equation via the Cole-Hopf transformation. For any spatial dimension n>1, the solution is expressed in terms of a family of weighted generalized Laguerre polynomials. We also discuss the large time behaviour of the solution of the system of forced Burgers equation.