Substituted imidazoles are of interest because of their useful biological activities. While several methods have been developed for the synthesis of such compounds, some of the reported methods utilize corrosive or to...Substituted imidazoles are of interest because of their useful biological activities. While several methods have been developed for the synthesis of such compounds, some of the reported methods utilize corrosive or toxic catalysts. We report a bismuth (III) triflate catalyzed multicomponent synthesis of 2,4,5-trisubstituted imidazoles. Bismuth (III) compounds are attractive from a green chemistry perspective because they are remarkably non-toxic and non-corrosive. Multicomponent syntheses save time and generate less waste.展开更多
Substituted imidazoles are of interest because of their useful biological activities. While several methods have been developed for the synthesis of such compounds, some of the reported methods utilize corrosive or to...Substituted imidazoles are of interest because of their useful biological activities. While several methods have been developed for the synthesis of such compounds, some of the reported methods utilize corrosive or toxic catalysts. We report a bismuth (III) triflate catalyzed multicomponent synthesis of 2,4,5-trisubstituted imidazoles. Bismuth (III) compounds are attractive from a green chemistry perspective because they are remarkably non-toxic and non-corrosive. Multicomponent syntheses save time and generate less waste.展开更多
Comprehensive Summary The development of switchable solvent-free multicomponent reactions to build high-value-added products is an important demand for organic synthesis.Herein,we detailed the successful implementatio...Comprehensive Summary The development of switchable solvent-free multicomponent reactions to build high-value-added products is an important demand for organic synthesis.Herein,we detailed the successful implementation of a switchable strategy for the construction of diverse 4-fluoroalkyl-1,4-dihydropyrimidines and 4-fluoroalkyl-pyrimidines via a solvent/additive-free[3+2+1]annulation,starting from readily available enamines,trifluoroacetaldehyde hydrate or 1-ethoxy-2,2-difluoroethanol and amidines hydrochloride.This reaction conforms to the concept of green synthesis,and provides a new avenue to access valuable fluorinated heterocycles.展开更多
Transition metal phosphides(TMPs)have exhibited decent performance in an oxygen evolution reaction(OER),which is a kinetic bottleneck in many energy storages and conversion systems.Most reported catalysts are composed...Transition metal phosphides(TMPs)have exhibited decent performance in an oxygen evolution reaction(OER),which is a kinetic bottleneck in many energy storages and conversion systems.Most reported catalysts are composed of three or fewer metallic components.The inherent complexity of multicomponent TMPs with more than four metallic components hinders their investigation in rationally designing the structure and,more importantly,comprehending the component-activity correlation.Through hydrothermal growth and subsequent phosphor-ization,we reported a facile strategy for combining TMPs with tunable elemental compositions(Ni,Fe,Mn,Co,Cu)on a two-dimensional ti-tanium carbide(MXene)flake.The obtained TMPs/MXene hybrid nanostructures demonstrate homogeneously distributed elements.They ex-hibit high electrical conductivity and strong interfacial interaction,resulting in an accelerated reaction kinetics and long-term stability.The res-ults of different component catalysts’OER performance show that NiFeMnCoP/MXene is the most active catalyst,with a low overpotential of 240 mV at 10 mA·cm−2,a small Tafel slope of 41.43 mV·dec−1,and a robust long-term electrochemical stability.According to the electrocata-lytic mechanism investigation,the enhanced NiFeMnCoP/MXene OER performance is due to the strong synergistic effect of the multi-ele-mental composition.Our work,therefore,provides a scalable synthesis route for multi-elemental TMPs and a valuable guideline for efficient MXene-supported catalysts design.展开更多
Carbon dioxide(CO_(2)) is the main greenhouse gas and also an ideal C1 feedstock in organic synthesis because it is abundant,nontoxic,nonflammable,and renewable.The synthesis of organic carbamates using CO_(2) as a ph...Carbon dioxide(CO_(2)) is the main greenhouse gas and also an ideal C1 feedstock in organic synthesis because it is abundant,nontoxic,nonflammable,and renewable.The synthesis of organic carbamates using CO_(2) as a phosgene alternative has attracted extensive attention because of the importance of carbamates in organic synthesis and in the pharmaceutical and agrochemical industries.In recent decades,many multicomponent reaction strategies have been designed for constructing different types of organic carbamate molecules.Most of these methods rely on the in situ generation of carbamate anions from CO_(2) and amines,followed by reactions with other coupling partners.Synthetic strategies for acyclic carbamates include nucleophile‐electrophile coupling,nucleo‐phile‐nucleophile oxidative coupling,difunctionalization of unsaturated hydrocarbons,and C–H bond functionalization.Strategies for the synthesizing cyclic carbamates include carboxylative cyclization of in situ‐generated unsaturated amines and difunctionalization of unsaturated amines with CO_(2) and other electrophilic reagents.This review summarizes the recent advances in the synthesis of organic carbamates from CO_(2) using different multicomponent reaction strategies.Future perspectives and challenges in the incorporation of CO_(2) into carbamates are also presented.展开更多
To improve the efficiency of cathodic oxygen reduction reaction(ORR)in zinc-air batteries(ZABs),an adsorption-complexation-calcination method was proposed to generate cobalt-based multicomponent nanoparticles comprisi...To improve the efficiency of cathodic oxygen reduction reaction(ORR)in zinc-air batteries(ZABs),an adsorption-complexation-calcination method was proposed to generate cobalt-based multicomponent nanoparticles comprising Co,Co_(3)O_(4)and CoN,as well as numerous N heteroatoms,on graphene nanosheets(Co/Co_(3)O_(4)/CoN/NG).The Co/Co_(3)O_(4)/CoN nanoparticles with the size of less than 50 nm are homogeneously dispersed on N-doped graphene(NG)substrate,which greatly improve the catalytic behaviors for ORR.The results show that the half-wave potential is as high as 0.80 V vs.RHE and the limiting current density is 4.60 mA·cm^(−2),which are close to those of commercially available platinum/carbon(Pt/C)catalysts.Applying as cathodic catalyst for ZABs,the battery shows large specific capacity and open circuit voltage of 843.0 mAh∙g^(−1) and 1.41 V,respectively.The excellent performance is attributed to the efficient two-dimensional structure with high accessible surface area and the numerous multiple active sites provided by highly scattered Co/Co_(3)O_(4)/CoN particles and doped nitrogen on the carbon matrix.展开更多
An efficient one-pot four-component reaction has been developed for the synthesis of 2,4-diarylcyclooctenopyridines, in moderate yields. This route is an effective modified two-step synthesis of Krohnke pyridine and i...An efficient one-pot four-component reaction has been developed for the synthesis of 2,4-diarylcyclooctenopyridines, in moderate yields. This route is an effective modified two-step synthesis of Krohnke pyridine and involves a four-component tandem reaction of pyridinium bromide with aromatic aldehydes and cyclooctanone in a system of NHaOAc/HOAc under microwave irradiation.展开更多
An efficient and green method for the synthesis of 1, 4-dihydropyridine derivatives mediated in an ionic liquid, [bmim][BF4], through a four-component condensation process of aldehydes, 1, 3-dione, Meldrum's acid and...An efficient and green method for the synthesis of 1, 4-dihydropyridine derivatives mediated in an ionic liquid, [bmim][BF4], through a four-component condensation process of aldehydes, 1, 3-dione, Meldrum's acid and ammonium acetate is disclosed in this paper.展开更多
The treatment of a multicomponent reversible reaction network is extremely complicated because largenumber of rate constants must be precisely determined and because the calculation based on these rateconstants is ted...The treatment of a multicomponent reversible reaction network is extremely complicated because largenumber of rate constants must be precisely determined and because the calculation based on these rateconstants is tedious.In order to reduce the degrees of freedom of the process,the authors propose a methodin which the reactor and the separator are regarded as a whole.Based on this approach,an N-componentreversible reaction system can be dealt with as a two—component system.Consequently,a simple and ac-cessible way of the apparent rate determination is suggested.For fiist-order reactions,an explicit,simplifiedexpression has been derived for both lumped and distributed parameter reaction systems.展开更多
An efficient and direct procedure for the synthesis of amidoalkylnaphthol derivatives employing a multi-component and one-pot condensation reaction of 2-naphthol, aromatic aldehyde and ace-tonitrile in the presence of...An efficient and direct procedure for the synthesis of amidoalkylnaphthol derivatives employing a multi-component and one-pot condensation reaction of 2-naphthol, aromatic aldehyde and ace-tonitrile in the presence of tetrachlorosilane (TCS). A binary reagent from (TCS)/ZnCl2 was used upon applying benzonitrile.展开更多
The synthesis of <span>nitrogen containing</span> heterocycles is of particular interest in the pharmaceutical industry due to the range of biological activities exhibited by such compounds. Their synthesi...The synthesis of <span>nitrogen containing</span> heterocycles is of particular interest in the pharmaceutical industry due to the range of biological activities exhibited by such compounds. Their synthesis using multicomponent reactions saves steps and minimizes waste generation. The bismuth (III) chloride multicomponent synthesis of a series of hexahydroimidazo[1, 2-</span></span><span><span><span style="font-family:""><i></span></span></span><span><span><i><span style="font-family:"">a</span></i></span></span><span><span><i><span style="font-family:""></i></span></i></span></span><span><span><span style="font-family:"">]pyridines is reported. <span>Bismuth (III) compounds are especially attractive from a green chemistry perspective because they are remarkably nontoxic, non-corrosive <span>and</span> relatively </span>inexpensive. The reported method avoids chromatography and an aqueous waste stream to afford the products in a very <span>mass efficient</span> manner.展开更多
A novel electrochemical multicomponent cascade reaction of indole-tethered alkenes with CF_(3)SO_(2)Na and n-BuaNI has been developed,which enables the rapid assembly of spiropyrrolidinyl-oxindoles in good yields.The ...A novel electrochemical multicomponent cascade reaction of indole-tethered alkenes with CF_(3)SO_(2)Na and n-BuaNI has been developed,which enables the rapid assembly of spiropyrrolidinyl-oxindoles in good yields.The experimental results and DFT calculations suggest that this reaction proceeds through the oxidation of CF_(3)SO_(2)Na,radical coupling with alkene,spirocyclization,oxidation of sulfinate,iodide substitution,and water coupling.This strategy features mild reaction conditions,easy-to-handle reactants,and good chemical yields.This finding not only enriches the research contents of indole-tethered alkenes but also provides a green strategy for the construction of spiropyrrolidinyl-oxindoles compared with the existing methodologies.展开更多
文摘Substituted imidazoles are of interest because of their useful biological activities. While several methods have been developed for the synthesis of such compounds, some of the reported methods utilize corrosive or toxic catalysts. We report a bismuth (III) triflate catalyzed multicomponent synthesis of 2,4,5-trisubstituted imidazoles. Bismuth (III) compounds are attractive from a green chemistry perspective because they are remarkably non-toxic and non-corrosive. Multicomponent syntheses save time and generate less waste.
文摘Substituted imidazoles are of interest because of their useful biological activities. While several methods have been developed for the synthesis of such compounds, some of the reported methods utilize corrosive or toxic catalysts. We report a bismuth (III) triflate catalyzed multicomponent synthesis of 2,4,5-trisubstituted imidazoles. Bismuth (III) compounds are attractive from a green chemistry perspective because they are remarkably non-toxic and non-corrosive. Multicomponent syntheses save time and generate less waste.
基金the National Natural Science Foundation of China(22071171)the Natural Science Foundation of Zhejiang Province(LZ22B020003)for financial support of this work.
文摘Comprehensive Summary The development of switchable solvent-free multicomponent reactions to build high-value-added products is an important demand for organic synthesis.Herein,we detailed the successful implementation of a switchable strategy for the construction of diverse 4-fluoroalkyl-1,4-dihydropyrimidines and 4-fluoroalkyl-pyrimidines via a solvent/additive-free[3+2+1]annulation,starting from readily available enamines,trifluoroacetaldehyde hydrate or 1-ethoxy-2,2-difluoroethanol and amidines hydrochloride.This reaction conforms to the concept of green synthesis,and provides a new avenue to access valuable fluorinated heterocycles.
基金the National Nat-ural Science Foundation of China(No.51771132)the Open Fund Project of Qinghai Minzu University-Nanoma-terials and Nanotechnology Team&Platform(No.2021-QHMU-PI-nano-KF01).
文摘Transition metal phosphides(TMPs)have exhibited decent performance in an oxygen evolution reaction(OER),which is a kinetic bottleneck in many energy storages and conversion systems.Most reported catalysts are composed of three or fewer metallic components.The inherent complexity of multicomponent TMPs with more than four metallic components hinders their investigation in rationally designing the structure and,more importantly,comprehending the component-activity correlation.Through hydrothermal growth and subsequent phosphor-ization,we reported a facile strategy for combining TMPs with tunable elemental compositions(Ni,Fe,Mn,Co,Cu)on a two-dimensional ti-tanium carbide(MXene)flake.The obtained TMPs/MXene hybrid nanostructures demonstrate homogeneously distributed elements.They ex-hibit high electrical conductivity and strong interfacial interaction,resulting in an accelerated reaction kinetics and long-term stability.The res-ults of different component catalysts’OER performance show that NiFeMnCoP/MXene is the most active catalyst,with a low overpotential of 240 mV at 10 mA·cm−2,a small Tafel slope of 41.43 mV·dec−1,and a robust long-term electrochemical stability.According to the electrocata-lytic mechanism investigation,the enhanced NiFeMnCoP/MXene OER performance is due to the strong synergistic effect of the multi-ele-mental composition.Our work,therefore,provides a scalable synthesis route for multi-elemental TMPs and a valuable guideline for efficient MXene-supported catalysts design.
文摘Carbon dioxide(CO_(2)) is the main greenhouse gas and also an ideal C1 feedstock in organic synthesis because it is abundant,nontoxic,nonflammable,and renewable.The synthesis of organic carbamates using CO_(2) as a phosgene alternative has attracted extensive attention because of the importance of carbamates in organic synthesis and in the pharmaceutical and agrochemical industries.In recent decades,many multicomponent reaction strategies have been designed for constructing different types of organic carbamate molecules.Most of these methods rely on the in situ generation of carbamate anions from CO_(2) and amines,followed by reactions with other coupling partners.Synthetic strategies for acyclic carbamates include nucleophile‐electrophile coupling,nucleo‐phile‐nucleophile oxidative coupling,difunctionalization of unsaturated hydrocarbons,and C–H bond functionalization.Strategies for the synthesizing cyclic carbamates include carboxylative cyclization of in situ‐generated unsaturated amines and difunctionalization of unsaturated amines with CO_(2) and other electrophilic reagents.This review summarizes the recent advances in the synthesis of organic carbamates from CO_(2) using different multicomponent reaction strategies.Future perspectives and challenges in the incorporation of CO_(2) into carbamates are also presented.
基金financially supported by the National Natural Science Foundation of China (No. 52102100)the Industry-University-Research Cooperation Project of Jiangsu Province, China (No. BY2021525)the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (No. SJCX22_1944)
文摘To improve the efficiency of cathodic oxygen reduction reaction(ORR)in zinc-air batteries(ZABs),an adsorption-complexation-calcination method was proposed to generate cobalt-based multicomponent nanoparticles comprising Co,Co_(3)O_(4)and CoN,as well as numerous N heteroatoms,on graphene nanosheets(Co/Co_(3)O_(4)/CoN/NG).The Co/Co_(3)O_(4)/CoN nanoparticles with the size of less than 50 nm are homogeneously dispersed on N-doped graphene(NG)substrate,which greatly improve the catalytic behaviors for ORR.The results show that the half-wave potential is as high as 0.80 V vs.RHE and the limiting current density is 4.60 mA·cm^(−2),which are close to those of commercially available platinum/carbon(Pt/C)catalysts.Applying as cathodic catalyst for ZABs,the battery shows large specific capacity and open circuit voltage of 843.0 mAh∙g^(−1) and 1.41 V,respectively.The excellent performance is attributed to the efficient two-dimensional structure with high accessible surface area and the numerous multiple active sites provided by highly scattered Co/Co_(3)O_(4)/CoN particles and doped nitrogen on the carbon matrix.
基金Supported by the National Natural Science Foundation of China(No.20672091)the Jiangsu Provincial Key Program of Physical Chemistry in Yangzhou University, China
文摘An efficient one-pot four-component reaction has been developed for the synthesis of 2,4-diarylcyclooctenopyridines, in moderate yields. This route is an effective modified two-step synthesis of Krohnke pyridine and involves a four-component tandem reaction of pyridinium bromide with aromatic aldehydes and cyclooctanone in a system of NHaOAc/HOAc under microwave irradiation.
文摘An efficient and green method for the synthesis of 1, 4-dihydropyridine derivatives mediated in an ionic liquid, [bmim][BF4], through a four-component condensation process of aldehydes, 1, 3-dione, Meldrum's acid and ammonium acetate is disclosed in this paper.
文摘The treatment of a multicomponent reversible reaction network is extremely complicated because largenumber of rate constants must be precisely determined and because the calculation based on these rateconstants is tedious.In order to reduce the degrees of freedom of the process,the authors propose a methodin which the reactor and the separator are regarded as a whole.Based on this approach,an N-componentreversible reaction system can be dealt with as a two—component system.Consequently,a simple and ac-cessible way of the apparent rate determination is suggested.For fiist-order reactions,an explicit,simplifiedexpression has been derived for both lumped and distributed parameter reaction systems.
文摘An efficient and direct procedure for the synthesis of amidoalkylnaphthol derivatives employing a multi-component and one-pot condensation reaction of 2-naphthol, aromatic aldehyde and ace-tonitrile in the presence of tetrachlorosilane (TCS). A binary reagent from (TCS)/ZnCl2 was used upon applying benzonitrile.
文摘The synthesis of <span>nitrogen containing</span> heterocycles is of particular interest in the pharmaceutical industry due to the range of biological activities exhibited by such compounds. Their synthesis using multicomponent reactions saves steps and minimizes waste generation. The bismuth (III) chloride multicomponent synthesis of a series of hexahydroimidazo[1, 2-</span></span><span><span><span style="font-family:""><i></span></span></span><span><span><i><span style="font-family:"">a</span></i></span></span><span><span><i><span style="font-family:""></i></span></i></span></span><span><span><span style="font-family:"">]pyridines is reported. <span>Bismuth (III) compounds are especially attractive from a green chemistry perspective because they are remarkably nontoxic, non-corrosive <span>and</span> relatively </span>inexpensive. The reported method avoids chromatography and an aqueous waste stream to afford the products in a very <span>mass efficient</span> manner.
基金the financial supports from the National Natural Science Foundation of China(No.21761132021).
文摘A novel electrochemical multicomponent cascade reaction of indole-tethered alkenes with CF_(3)SO_(2)Na and n-BuaNI has been developed,which enables the rapid assembly of spiropyrrolidinyl-oxindoles in good yields.The experimental results and DFT calculations suggest that this reaction proceeds through the oxidation of CF_(3)SO_(2)Na,radical coupling with alkene,spirocyclization,oxidation of sulfinate,iodide substitution,and water coupling.This strategy features mild reaction conditions,easy-to-handle reactants,and good chemical yields.This finding not only enriches the research contents of indole-tethered alkenes but also provides a green strategy for the construction of spiropyrrolidinyl-oxindoles compared with the existing methodologies.