Multidrug Resistance Protein 2 (MRP2) is an ATP-dependent transmembrane protein that plays a pivotal role in the efflux of a wide variety of physiological substrates across the plasma membrane. Several studies have sh...Multidrug Resistance Protein 2 (MRP2) is an ATP-dependent transmembrane protein that plays a pivotal role in the efflux of a wide variety of physiological substrates across the plasma membrane. Several studies have shown that MRP2 can significantly affect the absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles of many therapeutic drugs and chemicals found in the environment and diet. This transporter can also efflux newly developed anticancer agents that target specific signaling pathways and are major clinical markers associated with multidrug resistance (MDR) of several types of cancers. MDR remains a major limitation to the advancement of the combinatorial chemotherapy regimen in cancer treatment. In addition to anticancer agents, MRP2 reduces the efficacy of various drug classes such as antivirals, antimalarials, and antibiotics. The unique role of MRP2 and its contribution to MDR makes it essential to profile drug-transporter interactions for all new and promising drugs. Thus, this current research seeks to identify modulators of MRP2 protein expression levels using cell-based assays. A unique recently approved FDA library (372 drugs) was screened using a high-throughput In-Cell ELISA assay to determine the effect of these therapeutic agents on protein expression levels of MRP2. A total of 49 FDA drugs altered MRP2 protein expression levels by more than 50% representing 13.17% of the compounds screened. Among the identified hits, thirty-nine (39) drugs increased protein expression levels whereas 10 drugs lowered protein expression levels of MRP2 after drug treatment. Our findings from this initial drug screening showed that modulators of MRP2 peregrinate multiple drug families and signify the importance of profiling drug interactions with this transporter. Data from this study provides essential information to improve combinatorial drug therapy and precision medicine as well as reduce the drug toxicity of various cancer chemotherapies.展开更多
Objective: To investigate the relationship between the expression of multidrug resistance-associated protein (MRP) and clinicopathological factors and prognosis. Methods: The expression of MRP in 62 cases with non-sma...Objective: To investigate the relationship between the expression of multidrug resistance-associated protein (MRP) and clinicopathological factors and prognosis. Methods: The expression of MRP in 62 cases with non-small cell lung cancer (NSCLC) was detected using immunohistochemistry method. The expression of MRP in 30 cases of NSCLC and corresponding normal lung tissues were detected using immunohistochemistry and Western Blot. Results: this study of tumor tissues confirmed the plasma membrane and/or cytoplasm locations of MRP. There was apparent difference between normal lung tissues and NSCLC in MRP. The survival analysis of 62 NSCLC showed that the mean survival time of the patients with negative MRP expression was 69.8117.41 months and that of patients with positive MRP expression, 25.384.46 months. Log-rank test suggested that the difference between them was significant (P=0.0156). It was also found that in squamous cell lung cancer the statistically significant difference between the mean survival time of patients with positive MRP expression and those with negative MRP expression (P=0.0153). Multivariate Cox model analysis suggested that the survival time was significantly related to expression of MRP (P=0.035) and lymphatic metastasis (P=0.038). Conclusion: MRP expression in NSCLC is significantly higher compared with normal lung tissues. The mean survival time of patients with negative MRP was relative longer and expression of MRP was an independent factor for prognosis.展开更多
BACKGROUND:Multidrug resistance(MDR)is extremely common in hepatocellular carcinoma(HCC)and is a major problem in cancer eradication by limiting the efficacy of chemotherapy.Modulation of c-Jun NH2-terminal kinase(JNK...BACKGROUND:Multidrug resistance(MDR)is extremely common in hepatocellular carcinoma(HCC)and is a major problem in cancer eradication by limiting the efficacy of chemotherapy.Modulation of c-Jun NH2-terminal kinase(JNK)activation could be a new method to reverse MDR.However,the relationship between JNK activity and MDR in HCC cells is unknown.This study aimed to explore the relationship between MDR and JNK in HCC cell lines with different degrees of MDR.METHODS:A MDR human HCC cell line,SMMC-7721/ ADM,was developed by exposing parental cells to gradually increasing concentrations of adriamycin.The MTT assay was used to determine drug sensitivity.Flow cytometry was used to analyze the cell cycle distribution and to measure the expression levels of P-glycoprotein(P-gp)and MDR-related protein(MRP)-1 in these cells.JNK1,JNK2 and JNK3 mRNA expression levels were quantified by real-time PCR.Expression and phosphorylation of JNK1,JNK2,and JNK3 were analyzed by Western blotting.RESULTS:The MDR of SMMC-7721/ADM cells resistant to 0.05 mg/L adriamycin was mainly attributed to the overexpression of P-gp but not MRP1.In addition,these cells had a significant increase in percentage in the S phase,accompanied by a decrease in percentage in the G0/G1 phase,which is likely associated with a reduced ability for cell proliferation and MDR generation.We found that JNK1,JNK2,and JNK3 activities were negatively correlated with the degree of MDR in HCC cells.CONCLUSION:This study suggests that JNK1,JNK2,and JNK3 activities are negatively correlated with the degree of MDR in HCC cells.展开更多
Our previous study demonstrated that BM-cyclin 1, a traditional anti-mycoplasma drug, could effectively reverse the multidrug resistance (MDR) of C-A120 cells. The present study aims to explore the reversal effect o...Our previous study demonstrated that BM-cyclin 1, a traditional anti-mycoplasma drug, could effectively reverse the multidrug resistance (MDR) of C-A120 cells. The present study aims to explore the reversal effect of BM-cyclin 1 on MDR and its mechanisms in BALB/C nude mice bearing C-A120 cells. Irnmunoblotting analysis and reverse transcription-polymerase chain reaction (RT-PCR) were used to study the change in multidrug resistance-associated protein 2 (MRP2) induced by BM-cyclin 1. We found that the expression levels of MRP2 protein and mRNA in C-A120 cells treated with BM-cyclin 1 were reduced significantly. Chemical colorimetry revealed no significant change in the level of glutathione (GSH). In the xenografl model, the inhibitory rate of C-A120 cells growth in BM-cyclin 1 plus adriamycin (ADM) group was 52%, which was significantly higher than in control group (P〈0.01). The immunoblotting and RT-PCR results conclusively demonstrated that BM-cycin 1 could significantly reduce the expression of MRP2 in transplanted tumor. In conclusion, BM-cyclin 1 could effectively reverse the MDR of C-A 120 cells in vivo by suppressing the expression of MRP2.展开更多
目的利福平(Rifampicin,RIF)具有肝毒性,但其机制尚不清楚。本研究在RIF诱导的肝内胆汁淤积小鼠中,探讨RIF对肝细胞胆汁酸转运体胆汁酸输出泵(bile salt exportpump,Bsep)和多药抵抗相关蛋白-2(multidrug resistance-associated protein...目的利福平(Rifampicin,RIF)具有肝毒性,但其机制尚不清楚。本研究在RIF诱导的肝内胆汁淤积小鼠中,探讨RIF对肝细胞胆汁酸转运体胆汁酸输出泵(bile salt exportpump,Bsep)和多药抵抗相关蛋白-2(multidrug resistance-associated protein-2,Mrp2)表达和定位影响。方法 48只♀ICR小鼠随机分为4组,RIF1wk组:经灌胃给予RIF(200mg.kg-1.d-1),连续1周,于末次给药后6h取材;RIF6h组:单次灌胃给予RIF(200mg.kg-1)后6h取材;RIF1周对照组(CON1wk)与RIF6h对照组(CON6h):经灌胃给予等容积生理盐水。所有小鼠均收集血液和肝组织,常规生化检测血清丙氨酸氨基转移酶(ALT)、天冬氨酸氨基转移酶(AST)、碱性磷酸酶(ALP)、总胆红素(TB)和结合胆红素(DB),并检测小鼠血清和肝组织总胆汁酸(TBA)水平。HE染色分析肝组织病理改变。RT-PCR测定肝脏肝细胞胆汁酸转运体Bsep和Mrp2mRNA表达。免疫荧光法分析Bsep和Mrp2在肝细胞的位置。结果给予RIF1周后,小鼠血清TB由(1.25±0.69)μmol.L-1上升至(65.73±12.08)μmol.L-1,上升近70倍,DB由(0.77±0.40)μmol.L-1上升至(53.33±12.43)μmol.L-1,上升约80倍,ALP由(110.2±13.8)U.L-1上升至(279.5±80.4)U.L-1,上升约1.5倍,TBA由(3.15±0.89)μmol.L-1上升至(13.54±6.51)μmol.L-1,上升约5倍并伴有血清ALT和AST轻度升高;肝脏组织TBA由(0.15±0.04)μmol.g-1liver上升至(0.30±0.19)μmol.g-1liver,上升约2倍;肝脏组织HE染色显示肝细胞出现脂肪变性、轻度坏死和炎症。单次给予RIF6h后血清TB、DB、ALP、ALT、AST和TBA明显上升,但未观察到小鼠肝脏组织病理发生改变。免疫荧光分析显示,给予小鼠RIF1wk与单次给予RIF6h后肝细胞中Bsep和Mrp2的定位发生了改变。而无论单次给予RIF还是连续给药1周,肝细胞Bsep和Mrp2mRNA表达水平均未发生变化。结论肝细胞胆汁酸转运体Bsep和Mrp2定位改变可能是RIF诱发肝内胆汁淤积的重要机制。展开更多
目的通过考察茵栀黄颗粒(茵陈、栀子、金银花和黄芩)对肝细胞膜转运体多药耐药相关蛋白2(Multidrugresistance-associated protein 2,Mrp2/ABCC2)、Na+-牛黄胆酸共转运多肽(Na+/taurocholate cotransporter,Ntcp/SLC10A1)及胆盐输出泵(B...目的通过考察茵栀黄颗粒(茵陈、栀子、金银花和黄芩)对肝细胞膜转运体多药耐药相关蛋白2(Multidrugresistance-associated protein 2,Mrp2/ABCC2)、Na+-牛黄胆酸共转运多肽(Na+/taurocholate cotransporter,Ntcp/SLC10A1)及胆盐输出泵(Bile salt export pump,Bsep/ABCB11)表达的影响。方法胆管结扎术制备胆汁淤积大鼠模型;生化检测和HE染色,观察茵栀黄颗粒的干预效果;流式细胞仪测定肝脏转运体Ntcp、Bsep和Mrp2的表达。结果与模型组相比,茵栀黄组肝细胞的脂肪病变和水肿较模型组显著减轻(P<0.05),Mrp2的表达显著升高(P<0.01);但Ntcp、Bsep的表达无明显变化。结论肝细胞膜转运体Mrp2的表达升高可能是茵栀黄颗粒的退黄利胆分子机制之一。展开更多
目的:探讨糖皮质激素(glucocorticoid,GC)、免疫抑制剂在IgA肾病应用中的耐药机制,以提高临床诊治水平和判断预后的综合能力。方法:经肾活检诊断为IgA肾病(综合临床排除继发性IgA肾病)患者作为研究对象,按临床诊断和临床标准接受GC、免...目的:探讨糖皮质激素(glucocorticoid,GC)、免疫抑制剂在IgA肾病应用中的耐药机制,以提高临床诊治水平和判断预后的综合能力。方法:经肾活检诊断为IgA肾病(综合临床排除继发性IgA肾病)患者作为研究对象,按临床诊断和临床标准接受GC、免疫抑制剂治疗,观察疗效。治疗前留取外周血,提取细胞总RNA,通过实时荧光定量PCR(Real-Ti meRT-PCR)技术,测定IgA肾病患者外周血P-糖蛋白(P-glycoprotein,P-gp)、多药耐药相关蛋白2(multidrug resistance-associated protein 2,MRP2)mRNA表达,分析P-gp、MRP2 mRNA水平与GC、免疫抑制剂临床疗效和24 h蛋白尿(24 h UP)、肾小球滤过率(GFR)的相关性。结果:缓解组、显效组IgA肾病患者外周血P-gp mRNA平均显著低于有效组和无效组,有效组又显著低于无效组。患者外周血P-gp mRNA与治疗前24 h UP、GFR均无显著相关性,而与治疗后24 h UP呈显著正相关,与GFR呈显著负相关。缓解组患者MRP2 mRNA显著低于有效组和无效组,显效组显著低于无效组。MRP2 mRNA与治疗前24 h UP、GFR均无显著相关性,与治疗后24 h UP呈显著正相关,与GFR无显著相关。结论:IgA肾病患者外周血细胞P-gp、MRP2的高水平表达可能参与了GC、免疫抑制剂的耐药机制,影响了临床疗效。治疗前测定IgA肾病患者外周血P-gp、MRP2 mRNA表达对预测激素、免疫抑制剂的疗效有一定的参考价值。抑制IgA肾病患者外周血P-gp、MRP2的高表达则可能为提高临床疗效开辟另一途径。展开更多
文摘Multidrug Resistance Protein 2 (MRP2) is an ATP-dependent transmembrane protein that plays a pivotal role in the efflux of a wide variety of physiological substrates across the plasma membrane. Several studies have shown that MRP2 can significantly affect the absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles of many therapeutic drugs and chemicals found in the environment and diet. This transporter can also efflux newly developed anticancer agents that target specific signaling pathways and are major clinical markers associated with multidrug resistance (MDR) of several types of cancers. MDR remains a major limitation to the advancement of the combinatorial chemotherapy regimen in cancer treatment. In addition to anticancer agents, MRP2 reduces the efficacy of various drug classes such as antivirals, antimalarials, and antibiotics. The unique role of MRP2 and its contribution to MDR makes it essential to profile drug-transporter interactions for all new and promising drugs. Thus, this current research seeks to identify modulators of MRP2 protein expression levels using cell-based assays. A unique recently approved FDA library (372 drugs) was screened using a high-throughput In-Cell ELISA assay to determine the effect of these therapeutic agents on protein expression levels of MRP2. A total of 49 FDA drugs altered MRP2 protein expression levels by more than 50% representing 13.17% of the compounds screened. Among the identified hits, thirty-nine (39) drugs increased protein expression levels whereas 10 drugs lowered protein expression levels of MRP2 after drug treatment. Our findings from this initial drug screening showed that modulators of MRP2 peregrinate multiple drug families and signify the importance of profiling drug interactions with this transporter. Data from this study provides essential information to improve combinatorial drug therapy and precision medicine as well as reduce the drug toxicity of various cancer chemotherapies.
文摘Objective: To investigate the relationship between the expression of multidrug resistance-associated protein (MRP) and clinicopathological factors and prognosis. Methods: The expression of MRP in 62 cases with non-small cell lung cancer (NSCLC) was detected using immunohistochemistry method. The expression of MRP in 30 cases of NSCLC and corresponding normal lung tissues were detected using immunohistochemistry and Western Blot. Results: this study of tumor tissues confirmed the plasma membrane and/or cytoplasm locations of MRP. There was apparent difference between normal lung tissues and NSCLC in MRP. The survival analysis of 62 NSCLC showed that the mean survival time of the patients with negative MRP expression was 69.8117.41 months and that of patients with positive MRP expression, 25.384.46 months. Log-rank test suggested that the difference between them was significant (P=0.0156). It was also found that in squamous cell lung cancer the statistically significant difference between the mean survival time of patients with positive MRP expression and those with negative MRP expression (P=0.0153). Multivariate Cox model analysis suggested that the survival time was significantly related to expression of MRP (P=0.035) and lymphatic metastasis (P=0.038). Conclusion: MRP expression in NSCLC is significantly higher compared with normal lung tissues. The mean survival time of patients with negative MRP was relative longer and expression of MRP was an independent factor for prognosis.
基金supported by grants from the Medical Innovation Fundation of Fujian Province(No.2007-CXB-7)the Natural Science Foundation of Fujian Province(No.2009D010)
文摘BACKGROUND:Multidrug resistance(MDR)is extremely common in hepatocellular carcinoma(HCC)and is a major problem in cancer eradication by limiting the efficacy of chemotherapy.Modulation of c-Jun NH2-terminal kinase(JNK)activation could be a new method to reverse MDR.However,the relationship between JNK activity and MDR in HCC cells is unknown.This study aimed to explore the relationship between MDR and JNK in HCC cell lines with different degrees of MDR.METHODS:A MDR human HCC cell line,SMMC-7721/ ADM,was developed by exposing parental cells to gradually increasing concentrations of adriamycin.The MTT assay was used to determine drug sensitivity.Flow cytometry was used to analyze the cell cycle distribution and to measure the expression levels of P-glycoprotein(P-gp)and MDR-related protein(MRP)-1 in these cells.JNK1,JNK2 and JNK3 mRNA expression levels were quantified by real-time PCR.Expression and phosphorylation of JNK1,JNK2,and JNK3 were analyzed by Western blotting.RESULTS:The MDR of SMMC-7721/ADM cells resistant to 0.05 mg/L adriamycin was mainly attributed to the overexpression of P-gp but not MRP1.In addition,these cells had a significant increase in percentage in the S phase,accompanied by a decrease in percentage in the G0/G1 phase,which is likely associated with a reduced ability for cell proliferation and MDR generation.We found that JNK1,JNK2,and JNK3 activities were negatively correlated with the degree of MDR in HCC cells.CONCLUSION:This study suggests that JNK1,JNK2,and JNK3 activities are negatively correlated with the degree of MDR in HCC cells.
基金supported by grants from Guangdong Provincial Natural Science Foundation of China(No.S2012010008792)Fundamental Research Funds for the Central Universities of China(No.10ykpy05)
文摘Our previous study demonstrated that BM-cyclin 1, a traditional anti-mycoplasma drug, could effectively reverse the multidrug resistance (MDR) of C-A120 cells. The present study aims to explore the reversal effect of BM-cyclin 1 on MDR and its mechanisms in BALB/C nude mice bearing C-A120 cells. Irnmunoblotting analysis and reverse transcription-polymerase chain reaction (RT-PCR) were used to study the change in multidrug resistance-associated protein 2 (MRP2) induced by BM-cyclin 1. We found that the expression levels of MRP2 protein and mRNA in C-A120 cells treated with BM-cyclin 1 were reduced significantly. Chemical colorimetry revealed no significant change in the level of glutathione (GSH). In the xenografl model, the inhibitory rate of C-A120 cells growth in BM-cyclin 1 plus adriamycin (ADM) group was 52%, which was significantly higher than in control group (P〈0.01). The immunoblotting and RT-PCR results conclusively demonstrated that BM-cycin 1 could significantly reduce the expression of MRP2 in transplanted tumor. In conclusion, BM-cyclin 1 could effectively reverse the MDR of C-A 120 cells in vivo by suppressing the expression of MRP2.
文摘目的通过考察茵栀黄颗粒(茵陈、栀子、金银花和黄芩)对肝细胞膜转运体多药耐药相关蛋白2(Multidrugresistance-associated protein 2,Mrp2/ABCC2)、Na+-牛黄胆酸共转运多肽(Na+/taurocholate cotransporter,Ntcp/SLC10A1)及胆盐输出泵(Bile salt export pump,Bsep/ABCB11)表达的影响。方法胆管结扎术制备胆汁淤积大鼠模型;生化检测和HE染色,观察茵栀黄颗粒的干预效果;流式细胞仪测定肝脏转运体Ntcp、Bsep和Mrp2的表达。结果与模型组相比,茵栀黄组肝细胞的脂肪病变和水肿较模型组显著减轻(P<0.05),Mrp2的表达显著升高(P<0.01);但Ntcp、Bsep的表达无明显变化。结论肝细胞膜转运体Mrp2的表达升高可能是茵栀黄颗粒的退黄利胆分子机制之一。
文摘目的:探讨糖皮质激素(glucocorticoid,GC)、免疫抑制剂在IgA肾病应用中的耐药机制,以提高临床诊治水平和判断预后的综合能力。方法:经肾活检诊断为IgA肾病(综合临床排除继发性IgA肾病)患者作为研究对象,按临床诊断和临床标准接受GC、免疫抑制剂治疗,观察疗效。治疗前留取外周血,提取细胞总RNA,通过实时荧光定量PCR(Real-Ti meRT-PCR)技术,测定IgA肾病患者外周血P-糖蛋白(P-glycoprotein,P-gp)、多药耐药相关蛋白2(multidrug resistance-associated protein 2,MRP2)mRNA表达,分析P-gp、MRP2 mRNA水平与GC、免疫抑制剂临床疗效和24 h蛋白尿(24 h UP)、肾小球滤过率(GFR)的相关性。结果:缓解组、显效组IgA肾病患者外周血P-gp mRNA平均显著低于有效组和无效组,有效组又显著低于无效组。患者外周血P-gp mRNA与治疗前24 h UP、GFR均无显著相关性,而与治疗后24 h UP呈显著正相关,与GFR呈显著负相关。缓解组患者MRP2 mRNA显著低于有效组和无效组,显效组显著低于无效组。MRP2 mRNA与治疗前24 h UP、GFR均无显著相关性,与治疗后24 h UP呈显著正相关,与GFR无显著相关。结论:IgA肾病患者外周血细胞P-gp、MRP2的高水平表达可能参与了GC、免疫抑制剂的耐药机制,影响了临床疗效。治疗前测定IgA肾病患者外周血P-gp、MRP2 mRNA表达对预测激素、免疫抑制剂的疗效有一定的参考价值。抑制IgA肾病患者外周血P-gp、MRP2的高表达则可能为提高临床疗效开辟另一途径。