Objectives The combined use of bedaquiline and delamanid(BDQ-DLM)is limited by an increased risk of prolonging the QTc interval.We retrospectively evaluated patients who received DLM/BDQcontaining regimens at a TB-spe...Objectives The combined use of bedaquiline and delamanid(BDQ-DLM)is limited by an increased risk of prolonging the QTc interval.We retrospectively evaluated patients who received DLM/BDQcontaining regimens at a TB-specialized hospital.We aimed to present clinical efficacy and safety data for Chinese patients.Methods This case-control study included patients with multidrug-resistant tuberculosis(MDR-TB)treated with BDQ alone or BDQ plus DLM.Results A total of 96 patients were included in this analysis:64 in the BDQ group and 32 in the BDQ+DLM group.Among the 96 patients with positive sputum culture at the initiation of BDQ alone or BDQ combined with DLM,46 patients(71.9%)in the BDQ group and 29(90.6%)in the BDQ-DLM group achieved sputum culture conversion during treatment.The rate of sputum culture conversion did not differ between the two groups.The time to sputum culture conversion was significantly shorter in the BDQ-DLM group than in the BDQ group.The most frequent adverse event was QTc interval prolongation;however,the frequency of adverse events did not differ between the groups.Conclusion In conclusion,our results demonstrate that the combined use of BDQ and DLM is efficacious and tolerable in Chinese patients infected with MDR-TB.Patients in the BDQ-DLM group achieved sputum culture conversion sooner than those in the BDQ group.展开更多
Objectives:This investigation aimed to elucidate the inhibitory impact of apatinib on the multidrug resistance of liver cancer both in vivo and in vitro.Methods:To establish a Hep3B/5-Fu resistant cell line,5-Fu conce...Objectives:This investigation aimed to elucidate the inhibitory impact of apatinib on the multidrug resistance of liver cancer both in vivo and in vitro.Methods:To establish a Hep3B/5-Fu resistant cell line,5-Fu concentrations were gradually increased in the culture media.Hep3B/5-Fu cells drug resistance and its alleviation by apatinib were confirmed via flow cytometry and Cell Counting Kit 8(CCK8)test.Further,Nuclear factor kappa B(NF-κB)siRNA was transfected into Hep3B/5-Fu cells to assess alterations in the expression of multidrug resistance(MDR)-related genes and proteins.Nude mice were injected with Hep3B/5-Fu cells to establish subcutaneous xenograft tumors and then categorized into 8 treatment groups.The treatments included oxaliplatin,5-Fu,and apatinib.In the tumor tissues,the expression of MDRrelated genes was elucidated via qRT-PCR,immunohistochemistry,and Western blot analyses.Results:The apatinibtreated mice indicated slower tumor growth with smaller size compared to the control group.Both the in vivo and in vitro investigations revealed that the apatinib-treated groups had reduced expression of MDR genes GST-pi,LRP,MDR1,and p-p65.Conclusions:Apatinib effectively suppresses MDR in human hepatic cancer cells by modulating the expression of genes related to MDR,potentially by suppressing the NF-κB signaling pathway.展开更多
Diarrheal diseases represent a significant and pervasive health challenge for humanity. The aetiology of diarrheal diseases is typically associated with the presence of enteropathogens, including viruses, bacteria and...Diarrheal diseases represent a significant and pervasive health challenge for humanity. The aetiology of diarrheal diseases is typically associated with the presence of enteropathogens, including viruses, bacteria and parasites. The implementation of preventive measures, including the maintenance of good food hygiene, effective water sanitation, and the development of rotavirus vaccines, has resulted in a notable reduction in the prevalence of the disease. However, the emergence of bacterial multidrug resistance due to the past or present inappropriate use of antibiotics has rendered bacterial infections a significant challenge. The objective of this review is threefold: firstly, to provide an overview of diarrheal diseases associated with bacteria;secondly, to offer a concise analysis of bacterial multidrug resistance on a global scale;and thirdly, to present the potential of filamentous fungi as an alternative solution to the challenge posed by multidrug-resistant strains. Campylobacter spp. is the most dangerous bacteria, followed by Shigella spp. and Vibrio cholerae in all age groups combined. However, Shigella spp. was the deadliest in children under five years of age and, together with E. coli, are the most antibiotic-resistant bacteria. With their highly developed secondary metabolism, fungi are a reservoir of natural bioactive compounds.展开更多
Multidrug Resistance Protein 2 (MRP2) is an ATP-dependent transmembrane protein that plays a pivotal role in the efflux of a wide variety of physiological substrates across the plasma membrane. Several studies have sh...Multidrug Resistance Protein 2 (MRP2) is an ATP-dependent transmembrane protein that plays a pivotal role in the efflux of a wide variety of physiological substrates across the plasma membrane. Several studies have shown that MRP2 can significantly affect the absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles of many therapeutic drugs and chemicals found in the environment and diet. This transporter can also efflux newly developed anticancer agents that target specific signaling pathways and are major clinical markers associated with multidrug resistance (MDR) of several types of cancers. MDR remains a major limitation to the advancement of the combinatorial chemotherapy regimen in cancer treatment. In addition to anticancer agents, MRP2 reduces the efficacy of various drug classes such as antivirals, antimalarials, and antibiotics. The unique role of MRP2 and its contribution to MDR makes it essential to profile drug-transporter interactions for all new and promising drugs. Thus, this current research seeks to identify modulators of MRP2 protein expression levels using cell-based assays. A unique recently approved FDA library (372 drugs) was screened using a high-throughput In-Cell ELISA assay to determine the effect of these therapeutic agents on protein expression levels of MRP2. A total of 49 FDA drugs altered MRP2 protein expression levels by more than 50% representing 13.17% of the compounds screened. Among the identified hits, thirty-nine (39) drugs increased protein expression levels whereas 10 drugs lowered protein expression levels of MRP2 after drug treatment. Our findings from this initial drug screening showed that modulators of MRP2 peregrinate multiple drug families and signify the importance of profiling drug interactions with this transporter. Data from this study provides essential information to improve combinatorial drug therapy and precision medicine as well as reduce the drug toxicity of various cancer chemotherapies.展开更多
Objective To explore the genotyping characteristics of human fecal Escherichia coli(E. coli) and the relationships between antibiotic resistance genes(ARGs) and multidrug resistance(MDR) of E. coli in Miyun District, ...Objective To explore the genotyping characteristics of human fecal Escherichia coli(E. coli) and the relationships between antibiotic resistance genes(ARGs) and multidrug resistance(MDR) of E. coli in Miyun District, Beijing, an area with high incidence of infectious diarrheal cases but no related data.Methods Over a period of 3 years, 94 E. coli strains were isolated from fecal samples collected from Miyun District Hospital, a surveillance hospital of the National Pathogen Identification Network. The antibiotic susceptibility of the isolates was determined by the broth microdilution method. ARGs,multilocus sequence typing(MLST), and polymorphism trees were analyzed using whole-genome sequencing data(WGS).Results This study revealed that 68.09% of the isolates had MDR, prevalent and distributed in different clades, with a relatively high rate and low pathogenicity. There was no difference in MDR between the diarrheal(49/70) and healthy groups(15/24).Conclusion We developed a random forest(RF) prediction model of TEM.1 + baeR + mphA + mphB +QnrS1 + AAC.3-IId to identify MDR status, highlighting its potential for early resistance identification. The causes of MDR are likely mobile units transmitting the ARGs. In the future, we will continue to strengthen the monitoring of ARGs and MDR, and increase the number of strains to further verify the accuracy of the MDR markers.展开更多
Objective:To systematically review the influencing factors of the treatment outcome of multidrug-resistant pulmonary tuberculosis and provide reference for the prevention and treatment of multidrug-resistant pulmonary...Objective:To systematically review the influencing factors of the treatment outcome of multidrug-resistant pulmonary tuberculosis and provide reference for the prevention and treatment of multidrug-resistant pulmonary tuberculosis.Method:Case control studies on the factors influencing the treatment outcome of multidrug-resistant pulmonary tuberculosis in Chinese databases(CNKI,VIP,Wanfang,Sinomed)and English databases(Pubmed,Web of science,Medline,Embase,Scopus)were searched and collected by computer.The search period was from the establishment of the database to January 2023.After screening and quality evaluation,RevMan5.4 was used for meta-analysis.Result:Totally 18 articles were ultimately included,with a sample size of 7328 people.The results showed that retreatment,complications,adverse reactions,and gender were related to the treatment outcome of multidrug-resistant pulmonary tuberculosis.The OR values and 95%CI of each factor were 0.22(0.17-0.29),0.38(0.32-0.46),0.27(0.17-0.44),and 0.43(0.33-0.56),respectively.Conclusion:Complications,retreatment,adverse reactions,and male gender are effective risk factors for the treatment outcome of multidrug-resistant pulmonary tuberculosis.In clinical practice,more targeted measures are needed for different types of patients.Due to the limitations of the number of studies,the above conclusions require more research to support them.展开更多
[Objective] This study aimed to investigate the multidrug resistance and prevalence of class I integrons in Salmonel a. [Method] Salmonel a strains were isolated from chicken farms in Shandong Province. Kauffmann-Whi...[Objective] This study aimed to investigate the multidrug resistance and prevalence of class I integrons in Salmonel a. [Method] Salmonel a strains were isolated from chicken farms in Shandong Province. Kauffmann-White classification method was employed to analyze the serotypes of Salmonel a strains. Minimum in-hibition concentration (MIC) of Salmonel a strains against 19 common antimicrobial drugs was analyzed determined with microdilution method. The class I integrons and carried drug resistance gene cassettes were detected by PCR. [Result] A total of 311 Salmonel a strains were isolated and classified into two serotypes, including 133 Salmonel a Indiana strains and 178 Salmonel a Enteritidis strains. Drug sensitivity test showed that the isolated Salmonel a strains were general y resistant to sulfadiazine, sulfamethoxazole, nalidixic acid, ampicil in, tetracycline, doxycycline and trimethoprim, with a multidrug resistance rate of 91.0% (283/311); 99% strains were sensitive to amikacin and colistin. PCR assay indicated that the detection rate of class I integrons was 65.0% (202/311); the positive rate of class I integrons in Salmonel a strains with multidrug resistance was 92.6%; among 202 positive strains, six strains carried gene cassette dfr17-aadA5. [Conclusion] According to the above results, class I integrons exist general y in Salmonel a and are closely associated with the multidrug resistance of Salmonel a strains.展开更多
AIM:To analyze the spectrum of isolated pathogens and antibiotic resistance for ocular infections within 5y at two tertiary hospitals in east China.METHODS:Ocular specimen data were collected from January 2019 to Octo...AIM:To analyze the spectrum of isolated pathogens and antibiotic resistance for ocular infections within 5y at two tertiary hospitals in east China.METHODS:Ocular specimen data were collected from January 2019 to October 2023.The pathogen spectrum and positive culture rate for different infection location,such as keratitis,endophthalmitis,and periocular infections,along with antibiotic resistance were analyzed.RESULTS:We included 2727 specimens,including 827(30.33%)positive cultures.A total of 871 strains were isolated,530(60.85%)bacterial and 341(39.15%)fungal strains were isolated.Gram-positive cocci(GPC)were the most common ocular pathogens.The most common bacterial isolates were Staphylococcus epidermidis(25.03%),Staphylococcus aureus(7.46%),Streptococcus pneumoniae(4.59%),Corynebacterium macginleyi(3.44%),and Pseudomonas aeruginosa(3.33%).The most common fungal genera were Fusarium spp.(12.74%),Aspergillus spp.(6.54%),and Scedosporium spp.(5.74%).Staphylococcus epidermidis strains showed more than 50%resistance to fluoroquinolones.Streptococcus pneumoniae and Corynebacterium macginleyi showed more than 90%resistance to erythromycin.The percentage of bacteria showing multidrug resistance(MDR)significantly decreased(χ^(2)=17.44,P=0.002).CONCLUSION:GPC are the most common ocular pathogens.Corynebacterium macginleyi,as the fourth common bacterium,may currently be the local microbiological feature of east China.Fusarium spp.is the most common fungus.More than 50%of the GPC are resistant to fluoroquinolones,penicillins,and macrolides.However,the proportion of MDR strains has been reduced over time.展开更多
Studies on structure-activity relationship of phenothiazines (PTZs) forinhibition of protein kinase C (PKC) and reversal of multidrug resistance (MDR) has been made invitro. The results showed that the order of potenc...Studies on structure-activity relationship of phenothiazines (PTZs) forinhibition of protein kinase C (PKC) and reversal of multidrug resistance (MDR) has been made invitro. The results showed that the order of potency of reversal effect of PTZs on MDR is as follows:2-COC_3 H_7 > 2-CF_3 > 2-COCH_3 > H. The type of piperazinyl substitution also significantlyaffected potency against MDR. The results show the order: CH_3 > COOC_2 H_5 > C_2 H_4 OH. Inaddition, PKC plays a marked role in diverse cellular process including MDR. Some derivatives of PTZwas tested for inhibition of PKC, of which PTZ11 showed the highest inhibitory effect of MDR andPKC, implying a potential reversal agent of MDR for tumor therapy in the future. We also tried toexplore the possible binding model of PTZs to PKC. Our molecular-modeling study preliminarilysuggests how these PTZs bind to PKC and provides a structural basis for the design of high affinityPKC-modulator. The infor-mation may be used in the rational design of more effective drugs.展开更多
To establish a method to evaluate the effects of chemosensitizer onP-glycoprotein using ^(99m)Tc-MIBI, and observe the changes of ^(99m)Tc-MIBI uptake kinetics andP-glycoprotein levels after using verapamil in MDR hum...To establish a method to evaluate the effects of chemosensitizer onP-glycoprotein using ^(99m)Tc-MIBI, and observe the changes of ^(99m)Tc-MIBI uptake kinetics andP-glycoprotein levels after using verapamil in MDR human breast cells MCF-7/Adr. Methods: MDR breastcarcinoma cells, MCF-7/Adr, were incubated and different protocols were performed. Protocol Ⅰ: achemosensitizer, verapamil (10 μmol/L), was added into cell culture medium, while in control group,the same volume of DMEM was given. Cells were harvested after 2 h incubation with ^(99m)Tc-MIBI.Protocol Ⅱ: Verapamil (10 μmol/L) was added into cell culture medium and incubated for 20 min, 40min, 60 min, 80 min, 8 h, 24 h, 48 h and 72 h respectively. Cells were harvested after 2 hincubation with ^(99m)Tc-MIBI. The radioactivity of the cells was measured and P-glycoproteinexpression levels were determined with immunohistochemical stain. Results: Protocol Ⅰ: After 2hincubation with verapamil the cellular uptake of ^(99m)Tc-MIBI was remarkably higher than controlgroup (t=2.33, P 【 0.05), but there was no difference in P-glycoprotein expression levels betweentwo groups (P 】 0.05). Protocol Ⅱ: In verapamil group, ^(99m)Tc-MIBI uptake was increased withincubation time prolonging (F=58.2, P 【 0.05). When verapamil incubation time surpassed 8 h the^(99m)Tc-MIBI uptake negatively correlated to the P-glycoprotein expression levels (r=-0.73, P 【0.01). However, when incubation time was less than 80 min, there was no correlation between^(99m)Tc-MIBI accumulation and P-glycoprotein levels (r=0.16, P 】 0.05). Conclusion: ^(99m)Tc-MIBImay be used to evaluate the qualitative as well as quantitative change of P-glycoprotein expressionlevels induced by the chemosensitizer, verapamil.展开更多
Objective: To study the reversal effect of neferine on adriamycin (ADM) resistant human breast cancer cell line MCF-7/ADM. Methods: The cytotoxic effect of Nef or ADM was determined by 3-[4, 5-dimethylthiazol-2.-yl], ...Objective: To study the reversal effect of neferine on adriamycin (ADM) resistant human breast cancer cell line MCF-7/ADM. Methods: The cytotoxic effect of Nef or ADM was determined by 3-[4, 5-dimethylthiazol-2.-yl], 5-diphenyl tetraxolium bromid (MTT) assay. Apoptosis and the expression of P-glycoprotein (P-gp) were detected by flow cytometry (FCM). The intracellular ADM concentration was measured by HPLC. Results: Nef at 1, 5, 10 mol/L decreased the IC50 of ADM to MCF-7/ADM from 11.63 g/mL to 4.59, 2.44, 0.27 g/mL respectively. MCF-7/ADM could resist the apoptosis induced by ADM while Nef (1-10 mol/L) could augment ADR-mediated apoptosis. Nef (10 mol/L) increased the accumulation of ADM up to 2.88 fold in MCF-7/ADM but not in sensitive cells MCF-7/S and reduced the expression of P-gp in MCF-7/ADM cells. Conclusion: Nef can circumvent multidrug resistance (MDR) of MCF-7/ADM cells and the mechanism was associated with the increase of intracellular accumulation of ADM and the reduced expression of P-gp in MCF-7/ADM cells.展开更多
Background: Klebsiella spp. are bacteria of medical importance for their role in opportunistic infections which are often difficult to treat because of resistance to one or several antimicrobials. The aim of this stud...Background: Klebsiella spp. are bacteria of medical importance for their role in opportunistic infections which are often difficult to treat because of resistance to one or several antimicrobials. The aim of this study was to determine antimicrobial resistance due to Extended Spectrum Beta-lactamase (ESBL), Class C cephalosporinase (AmpC) and carbapenemase enzymes in Klebsiella spp. isolated from patients consulted at four hospitals. Methodology: The study was cross-sectional and descriptive. A total of 4190 non-repetitive patients specimens from 13 types of clinical specimens were analysed from February to November 2020. Two hundred and twenty-five (225) Klebsiella spp isolates were identified using API 20E and antimicrobial susceptibility testing done according to the Kirby Bauer disc diffusion method. ESBL and AmpC phenotypes were determined by the combination disc method and carbapenemases by double disc synergy method, referenced by EUCAST guidelines for the resistance testing. Results: The frequency of the species was Klebsiella pneumoniae (69%, 155/255), K. oxytoca (14%, 31/255), K. ozaenae (12%, 27/225) and K. rhinoscleromatis (5%, 11/225). Isolates were most resistant to sulphomethoxazole trimethoprim (84%, 189/225), cepaholosporins (80%, 180/225), and least resistant to carbapenems (10.7%, 24/225). Two K. oxytoca and one K. pneumoniae were resistant to all antibiotics tested. Klebsiella pneumoniae had the most multidrug resistant isolates (59.4%, 134/225). Most isolates (83.6%, 188/225) expressed at least one enzyme, while 63.6% (143/225) of the isolates expressed at least two enzymes. Some isolates were ESBL (71.6%, 161/225), carbapenemase (10.7%, 24/225) and AmpC (6.6%, 15/225) producers. Three carbapenemases (Klebsiella pneumoniae carbapenemase-KPC, Metallo-Beta Lactamase-MBL and OXA-48) were detected. Conclusion: These results revealed that resistance of Klebsiella spp. to cephalosporins is high and this may be exacerbated by co-expression of AmpC and carbapenemases aggravating associated patient morbidity and mortality. Monitoring of antimicrobial resistance of local strains is necessary for informed decisions on empirical treatment. .展开更多
The ability of two dihydrostilbene derivatives erianin and chrysotoxine from Dendrobium chrysotoxum to reverse multidrug resistant (MDR) cells was investigated using murine B16 melanoma cells transfected with the huma...The ability of two dihydrostilbene derivatives erianin and chrysotoxine from Dendrobium chrysotoxum to reverse multidrug resistant (MDR) cells was investigated using murine B16 melanoma cells transfected with the human MDR 1 gene and crossresistant to vinblastine and adriamycin (B16/h MDR 1 cells). Both of the two compounds were shown to increase the accumulation of adriamycin, the P glycoprotein (P gp) substrate, in B16/h MDR 1 transfectants.展开更多
ABM: To investigate the cytotoxicity of the cytokine-induced killer (CIK) cells from the post-operation patients with primary hepatocellular carcinoma (HCC) to multidrug-resistant (MDR) cell of HCC both in vitro and i...ABM: To investigate the cytotoxicity of the cytokine-induced killer (CIK) cells from the post-operation patients with primary hepatocellular carcinoma (HCC) to multidrug-resistant (MDR) cell of HCC both in vitro and in vivo. METHODS: A drug-resistant cell line was established by culturing human HCC cell line Bel-7402 in complete RPMI 1640 medium with increasing concentrations of adriamycin from 10 to 2 000 nmol/L. CIK cells were obtained by inducing the peripheral blood mononuclear cells with rhlFN-γ, monoclonal anti-CD3 antibody, rhIL-1α as well as rhIL-2, which were added into the culture. To detect the cytotoxicity of the CIK cells from HCC patients, the Bel-7402/R was taken as target (T) cells and CIK cells as effect (E) cells. Cytotoxic test was performed and measured by MTT. As to in vivo test, CIK cells were transfused into patients with HCC. The tumor specimens of the patients were obtained and immunohistochemistry was carried out to detect CD3, CD45, CD45RO as well as CD68. RESULTS: A MDR 1 HCC cell line Bel-7402/R was established. Its MDR1 mRNA overexpressed which was shown by RT-PCR; the P-glycoprotein expression increased from 1.32% of parent cells to 54%. CIK cells expanded vigorously by more than 70-fold and the CD3+CD56+ increased by more than 600-fold after 3-wk incubation on average. The cytotoxicity of CIK from HCC patients to Bel-7402/R was about 50% and to L-02 below 10% (t = 8.87, P<0.01), the same as that of CIK from normal individuals. Each of the 17 patients received 1-5×1010of CIK cell transfusion. No side effects were observed. After CIK treatment, the tumor tissue nodules formed and a large amount of lymphocytes infiltrated in the liver cancer tissue and CD3, CD45, CD45RO, and CD68 increased greatly which was shown by immunohistochemistry. CONCLUSION: A stable MDR1 HCC cell line has been established which could recover from liquid nitrogen and CIK from HCC patients has strong cytotoxicity to MDR HCC cell. CIK adoptive immunotherapy is safe and has no side effects. Receivers improved their immunity to tumor evidently. CIK treatment may be a better choice for HCC patients after operation to prevent the recurrence, especially when tumors have developed drug resistance.展开更多
Bacterial infections are a leading cause of morbidity and mortality among solid organ transplant recipients.Over the last two decades,various multidrug-resistant(MDR)pathogens have emerged as relevant causes of infect...Bacterial infections are a leading cause of morbidity and mortality among solid organ transplant recipients.Over the last two decades,various multidrug-resistant(MDR)pathogens have emerged as relevant causes of infection in this population.Although this fact reflects the spread of MDR pathogens in health care facilities worldwide,several factors relating to the care of transplant donor candidates and recipients render these patients particularly prone to the acquisition of MDR bacteria and increase the likelihood of MDR infectious outbreaks in transplant units.The awareness of this high vulnerability of transplant recipients to infection leads to the more frequent use of broad-spectrum empiric antibiotic therapy,which further contributes to the selection of drug resistance.This vicious cycle is difficult to avoid and leads to a scenario of increased complexity and narrowed therapeutic options.Infection by MDR pathogens is more frequently associated with a failure to start appropriate empiric antimicrobial ther-apy.The lack of appropriate treatment may contribute to the high mortality occurring in transplant recipients with MDR infections.Furthermore,high therapeutic failure rates have been observed in patients infected with extensively-resistant pathogens,such as carbapenemresistant Enterobacteriaceae,for which optimal treatment remains undefined.In such a context,the careful implementation of preventive strategies is of utmost importance to minimize the negative impact that MDR infections may have on the outcome of liver transplant recipients.This article reviews the current literature regarding the incidence and outcome of MDR infections in liver transplant recipients,and summarizes current preventive and therapeutic recommendations.展开更多
AIM:To evaluate the effect of efflux pump inhibitors (EPIs) on multidrug resistance of Helicobacter pylori (H. pylori).METHODS: H. pylori strains were isolated and cultured on Brucella agar plates with 10% sheep's...AIM:To evaluate the effect of efflux pump inhibitors (EPIs) on multidrug resistance of Helicobacter pylori (H. pylori).METHODS: H. pylori strains were isolated and cultured on Brucella agar plates with 10% sheep's blood. The multidrug resistant (MDR) H. pylori were obtained with the inducer chloramphenicol by repeated doubling of the concentration until no colony was seen, then the susceptibilities of the MDR strains and their parents to 9 antibiotics were assessed with agar dilution tests. The present study included periods before and after the advent of the EPIs, carbonyl cyanide m-chlorophenyl hydrazone (CCCP), reserpine and pantoprazole), and the minimum inhibitory concentrations (MICs) were determined accordingly. In the same way, the effects of 5 proton pump inhibitors (PPIs), used in treatment of H. pylori infection, on MICs of antibiotics were evaluated.RESULTS: Four strains of MDR H. pylori were induced successfully, and the antibiotic susceptibilities of MDR strains were partly restored by CCCP and pantoprazole, but there was little effect of reserpine. Rabeprazole was the most effective of the 5 PPIs which could decrease the MICs of antibiotics for MDR H. pylori significantly.CONCLUSION: In vitro, some EPIs can strengthen the activities of different antibiotics which are the putative substrates of the efflux pump system in H. pylori.展开更多
AIM:To establish a multidrug-resistant hepatoma cell line(SK-Hep-1),and to investigate its biological characteristics.METHODS:A highly invasive SK-Hep-1 cell line of human hepatocellular carcinoma,also known as malign...AIM:To establish a multidrug-resistant hepatoma cell line(SK-Hep-1),and to investigate its biological characteristics.METHODS:A highly invasive SK-Hep-1 cell line of human hepatocellular carcinoma,also known as malignant hepatoma was incubated with a high concentration of cisplatin(CDDP) to establish a CDDP-resistant cell subline(SK-Hep-1/CDDP).The 50% inhibitory dose(IC50) values and the resistance indexes [(IC50 SK-Hep-1/CDDP)/(IC50 SK-Hep-1)] for other chemotherapeutic agents and the growth curve of cells were all evaluated using cell counting kit-8 assays.The distribution of the cell cycles were detected by flow cytometry.Expression of acquired multidrug resistance P-glycoprotein(MDR1,ABCB1) and multidrug resistance-associated protein 1(MRP1,ABCC1) was compared with that in parent cells by Western blotting and immunofluorescence combined with laser scanning confocal microscopy.RESULTS:The SK-Hep-1/CDDP cells(IC50 = 70.61 ± 1.06 μg/mL) was 13.76 times more resistant to CDDP than the SK-Hep-1 cells(IC50 = 5.13 ± 0.09 μg/mL),and CDDP-resistant cells also demonstrated cross-resistance to many anti-tumor agents such as doxorubicin,5-fluorouracil and vincristine.Similar morphologies were determined in both SK-Hep-1 and SK-Hep-1/CDDP groups.The cell cycle distribution of the SK-Hep-1/CDDP cell line exhibited a significantly increased percentage of cells in S(42.2% ± 2.65% vs 27.91% ± 2.16%,P < 0.01) and G2/M(20.67% ± 5.69% vs 12.14% ± 3.36%,P < 0.01) phases in comparison with SK-Hep-1 cells,while the percentage of cells in the G0/G1 phase decreased(37.5% ± 5.05% vs 59.83% ± 3.28%,P < 0.01).The levels of MDR1 and MRP1 were overexpressed in the SK-Hep-1/CDDP cells exhibiting the MDR phenotype.CONCLUSION:Multiple drug resistance of multiple drugs in the human hepatoma cell line SK-Hep-1/CDDP was closely related to the overexpression of MDR1 and MRP1.展开更多
AIM: To reverse the multidrug resistance (MDR) by RNA interference (RNAi)-mediated MDRI suppression in heparoma cells.METHODS: For reversing MDR by RNAi technology, two different short hairpin RNAs (shRNAs) we...AIM: To reverse the multidrug resistance (MDR) by RNA interference (RNAi)-mediated MDRI suppression in heparoma cells.METHODS: For reversing MDR by RNAi technology, two different short hairpin RNAs (shRNAs) were designed and constructed into pGenSil-1 plasmid, respectively. They were then transfected into a highly adriarnycin-resistant HepG2 hepatorna cell line (HepG2/ADM). The RNAi effect on MDR was evaluated by real-time PCR, cell cytotoxicity assay and rhodarnine 123 (Rh123) efflux assy. RESULTS: The stably-transfected clones showed various degrees of reversal of MDR phenotype. Surprisingly, the MDR phenotype was completely reversed in two transfected clones. CONCLUSION: MDR can be reversed by the shRNAmediated MDRI suppression in HepG2/ADM cells, which provides a valuable clue to make multidrug-resistant hepatoma cells sensitive to anti-cancer drugs.展开更多
AIM: To determine whether efflux systems contribute to multidrug resistance of H pylori. METHODS: A chloramphenicol-induced multidrug resistance model of six susceptible H pylori strains (5 isolates and H pylori NCTC1...AIM: To determine whether efflux systems contribute to multidrug resistance of H pylori. METHODS: A chloramphenicol-induced multidrug resistance model of six susceptible H pylori strains (5 isolates and H pylori NCTC11637) was developed. Multidrug-resistant (MDR) strains were selected and the minimal inhibitory concentration (MIC) of eryth-romycin, metronidazole, penicillin G, tetracycline, and ciprofloxacin in multidrug resistant strains and their parent strains was determined by agar dilution tests. The level of mRNA expression of hefA was assessed by fluorescence real-time quantitative PCR. A H pylori LZ1026 knockout mutant (ΔH pylori LZ1026) for (puta-tive) efflux protein was constructed by inserting the kanamycin resistance cassette from pEGFP-N2 into hefA, and its susceptibility profiles to 10 antibiotics were evaluated. RESULTS: The MIC of six multidrug-resistant strains (including 5 clinical isolates and H pylori NCTC11637) increased signifi cantly (≥ 4-fold) compared with their parent strains. The expression level of hefA gene was significantly higher in the MDR strains than in their parent strains (P = 0.033). A H pylori LZ1026 mutant was successfully constructed and the ΔH pylori LZ1026 was more susceptible to four of the 10 antibiotics. All the 20 strains displayed transcripts for hefA that con-fi rmed the in vitro expression of these genes.CONCLUSION: The efflux pump gene hefA plays an important role in multidrug resistance of H pylori.展开更多
AIM: To study the expression and phosphorylation of extracellular signal-regulated kinase (ERK) i and ERK2 in multidrug resistant (MDR) hepatocellular carcinoma (HCC) cells.METHODS: MDR HCC cell lines, HepG2/a...AIM: To study the expression and phosphorylation of extracellular signal-regulated kinase (ERK) i and ERK2 in multidrug resistant (MDR) hepatocellular carcinoma (HCC) cells.METHODS: MDR HCC cell lines, HepG2/adriamycin (ADM) and SMMC7721/ADM, were developed by exposing parental cells to stepwise increasing concentrations of ADM. MTT assay was used to determine drug sensitivity. Flow cytometry was employed to analyze cell cycle distribution and measure cell P-glycoprotein (P-gp) and multidrug resistant protein 1 (MRP1) expression levels. ERK1 and ERK2 mRNA expression lev-ls were measured by quantitative real-time PCR (QRTPCR). Expression and phosphorylation of ERK1 and ERK2 were analyzed by Western blot.RESULTS: MTT assay showed that HepG2/ADM andSMMC7721/ADM were resistant not only to ADM, but also to multiple anticancer drugs. The P-gp expression was over 10-fold higher in HepG2/ADM cells than in HepG2 cells (8.92% ±0.22% vs 0.88% ± 0.05%, P 〈 0.001) and over 4-fold higher in SMMC7721/ADM cells than in SMMC7721 cells (7.37% ± 0.26% vs 1.74% ± 0.25%, P 〈 0.001). However, the MRP1 expression was not significantly higher in HepG2/ADM and SMMC7721/ADM cells than in parental cells. In addition, the percentage of MDR HepG2/ADM and SMMC7721/ADM cells was significantly decreased in the G0/G1 phase and increased in the the S phase or G2/M phase. QRT-PCR analysis demonstrated that the ERK1 and ERK2 mRNA expression increased apparently in HepG2/ADM cells and decreased significantly in SMMC7721/ADM cells. Compared with the expression of parental cells, ERK1 and ERK2 protein expressions were markedly decreased in SMMC7721/ADM cells. However, ERK2 protein expression was markedly increased while ERK1 protein expression had no significant change in HepG2/ADM cells. Phosphorylation of ERK1 and ERK2 was markedly decreased in both HepG2/ADM and SMMC7721/ADM MDR cells.CONCLUSION: ERK1 and ERK2 activities are downregulated in P-gp-mediated MDR HCC cells. ERK1 or ERK2 might be a potential drug target for circumventing MDR HCC cells,展开更多
基金supported by the Beijing Municipal Science&Technology Commission(Z191100006619077).
文摘Objectives The combined use of bedaquiline and delamanid(BDQ-DLM)is limited by an increased risk of prolonging the QTc interval.We retrospectively evaluated patients who received DLM/BDQcontaining regimens at a TB-specialized hospital.We aimed to present clinical efficacy and safety data for Chinese patients.Methods This case-control study included patients with multidrug-resistant tuberculosis(MDR-TB)treated with BDQ alone or BDQ plus DLM.Results A total of 96 patients were included in this analysis:64 in the BDQ group and 32 in the BDQ+DLM group.Among the 96 patients with positive sputum culture at the initiation of BDQ alone or BDQ combined with DLM,46 patients(71.9%)in the BDQ group and 29(90.6%)in the BDQ-DLM group achieved sputum culture conversion during treatment.The rate of sputum culture conversion did not differ between the two groups.The time to sputum culture conversion was significantly shorter in the BDQ-DLM group than in the BDQ group.The most frequent adverse event was QTc interval prolongation;however,the frequency of adverse events did not differ between the groups.Conclusion In conclusion,our results demonstrate that the combined use of BDQ and DLM is efficacious and tolerable in Chinese patients infected with MDR-TB.Patients in the BDQ-DLM group achieved sputum culture conversion sooner than those in the BDQ group.
基金supported by grants from the National Natural Science Foundation of China(No.82272986 to SY)the Natural Science Foundation of Guangdong Province,China(No.2023A1515010230 to SY)+1 种基金the Science and Technology Foundation of Shenzhen(No.JCYJ20220531094805012 to SY)the Scientific Research Project of Shenzhen Pingshan District Health System(202060 to SY).
文摘Objectives:This investigation aimed to elucidate the inhibitory impact of apatinib on the multidrug resistance of liver cancer both in vivo and in vitro.Methods:To establish a Hep3B/5-Fu resistant cell line,5-Fu concentrations were gradually increased in the culture media.Hep3B/5-Fu cells drug resistance and its alleviation by apatinib were confirmed via flow cytometry and Cell Counting Kit 8(CCK8)test.Further,Nuclear factor kappa B(NF-κB)siRNA was transfected into Hep3B/5-Fu cells to assess alterations in the expression of multidrug resistance(MDR)-related genes and proteins.Nude mice were injected with Hep3B/5-Fu cells to establish subcutaneous xenograft tumors and then categorized into 8 treatment groups.The treatments included oxaliplatin,5-Fu,and apatinib.In the tumor tissues,the expression of MDRrelated genes was elucidated via qRT-PCR,immunohistochemistry,and Western blot analyses.Results:The apatinibtreated mice indicated slower tumor growth with smaller size compared to the control group.Both the in vivo and in vitro investigations revealed that the apatinib-treated groups had reduced expression of MDR genes GST-pi,LRP,MDR1,and p-p65.Conclusions:Apatinib effectively suppresses MDR in human hepatic cancer cells by modulating the expression of genes related to MDR,potentially by suppressing the NF-κB signaling pathway.
文摘Diarrheal diseases represent a significant and pervasive health challenge for humanity. The aetiology of diarrheal diseases is typically associated with the presence of enteropathogens, including viruses, bacteria and parasites. The implementation of preventive measures, including the maintenance of good food hygiene, effective water sanitation, and the development of rotavirus vaccines, has resulted in a notable reduction in the prevalence of the disease. However, the emergence of bacterial multidrug resistance due to the past or present inappropriate use of antibiotics has rendered bacterial infections a significant challenge. The objective of this review is threefold: firstly, to provide an overview of diarrheal diseases associated with bacteria;secondly, to offer a concise analysis of bacterial multidrug resistance on a global scale;and thirdly, to present the potential of filamentous fungi as an alternative solution to the challenge posed by multidrug-resistant strains. Campylobacter spp. is the most dangerous bacteria, followed by Shigella spp. and Vibrio cholerae in all age groups combined. However, Shigella spp. was the deadliest in children under five years of age and, together with E. coli, are the most antibiotic-resistant bacteria. With their highly developed secondary metabolism, fungi are a reservoir of natural bioactive compounds.
文摘Multidrug Resistance Protein 2 (MRP2) is an ATP-dependent transmembrane protein that plays a pivotal role in the efflux of a wide variety of physiological substrates across the plasma membrane. Several studies have shown that MRP2 can significantly affect the absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles of many therapeutic drugs and chemicals found in the environment and diet. This transporter can also efflux newly developed anticancer agents that target specific signaling pathways and are major clinical markers associated with multidrug resistance (MDR) of several types of cancers. MDR remains a major limitation to the advancement of the combinatorial chemotherapy regimen in cancer treatment. In addition to anticancer agents, MRP2 reduces the efficacy of various drug classes such as antivirals, antimalarials, and antibiotics. The unique role of MRP2 and its contribution to MDR makes it essential to profile drug-transporter interactions for all new and promising drugs. Thus, this current research seeks to identify modulators of MRP2 protein expression levels using cell-based assays. A unique recently approved FDA library (372 drugs) was screened using a high-throughput In-Cell ELISA assay to determine the effect of these therapeutic agents on protein expression levels of MRP2. A total of 49 FDA drugs altered MRP2 protein expression levels by more than 50% representing 13.17% of the compounds screened. Among the identified hits, thirty-nine (39) drugs increased protein expression levels whereas 10 drugs lowered protein expression levels of MRP2 after drug treatment. Our findings from this initial drug screening showed that modulators of MRP2 peregrinate multiple drug families and signify the importance of profiling drug interactions with this transporter. Data from this study provides essential information to improve combinatorial drug therapy and precision medicine as well as reduce the drug toxicity of various cancer chemotherapies.
基金funded by the National Pathogen Identification Network project and Research on Key Technologies of Intelligent Monitoring,Early Warning and Tracing of Infectious Diseases in Miyun。
文摘Objective To explore the genotyping characteristics of human fecal Escherichia coli(E. coli) and the relationships between antibiotic resistance genes(ARGs) and multidrug resistance(MDR) of E. coli in Miyun District, Beijing, an area with high incidence of infectious diarrheal cases but no related data.Methods Over a period of 3 years, 94 E. coli strains were isolated from fecal samples collected from Miyun District Hospital, a surveillance hospital of the National Pathogen Identification Network. The antibiotic susceptibility of the isolates was determined by the broth microdilution method. ARGs,multilocus sequence typing(MLST), and polymorphism trees were analyzed using whole-genome sequencing data(WGS).Results This study revealed that 68.09% of the isolates had MDR, prevalent and distributed in different clades, with a relatively high rate and low pathogenicity. There was no difference in MDR between the diarrheal(49/70) and healthy groups(15/24).Conclusion We developed a random forest(RF) prediction model of TEM.1 + baeR + mphA + mphB +QnrS1 + AAC.3-IId to identify MDR status, highlighting its potential for early resistance identification. The causes of MDR are likely mobile units transmitting the ARGs. In the future, we will continue to strengthen the monitoring of ARGs and MDR, and increase the number of strains to further verify the accuracy of the MDR markers.
基金Major Science and Technology Projects in Hainan Province(ZDKJ2016008‑02)。
文摘Objective:To systematically review the influencing factors of the treatment outcome of multidrug-resistant pulmonary tuberculosis and provide reference for the prevention and treatment of multidrug-resistant pulmonary tuberculosis.Method:Case control studies on the factors influencing the treatment outcome of multidrug-resistant pulmonary tuberculosis in Chinese databases(CNKI,VIP,Wanfang,Sinomed)and English databases(Pubmed,Web of science,Medline,Embase,Scopus)were searched and collected by computer.The search period was from the establishment of the database to January 2023.After screening and quality evaluation,RevMan5.4 was used for meta-analysis.Result:Totally 18 articles were ultimately included,with a sample size of 7328 people.The results showed that retreatment,complications,adverse reactions,and gender were related to the treatment outcome of multidrug-resistant pulmonary tuberculosis.The OR values and 95%CI of each factor were 0.22(0.17-0.29),0.38(0.32-0.46),0.27(0.17-0.44),and 0.43(0.33-0.56),respectively.Conclusion:Complications,retreatment,adverse reactions,and male gender are effective risk factors for the treatment outcome of multidrug-resistant pulmonary tuberculosis.In clinical practice,more targeted measures are needed for different types of patients.Due to the limitations of the number of studies,the above conclusions require more research to support them.
基金Supported by National Natural Science Foundation of China(31201949,31172362)~~
文摘[Objective] This study aimed to investigate the multidrug resistance and prevalence of class I integrons in Salmonel a. [Method] Salmonel a strains were isolated from chicken farms in Shandong Province. Kauffmann-White classification method was employed to analyze the serotypes of Salmonel a strains. Minimum in-hibition concentration (MIC) of Salmonel a strains against 19 common antimicrobial drugs was analyzed determined with microdilution method. The class I integrons and carried drug resistance gene cassettes were detected by PCR. [Result] A total of 311 Salmonel a strains were isolated and classified into two serotypes, including 133 Salmonel a Indiana strains and 178 Salmonel a Enteritidis strains. Drug sensitivity test showed that the isolated Salmonel a strains were general y resistant to sulfadiazine, sulfamethoxazole, nalidixic acid, ampicil in, tetracycline, doxycycline and trimethoprim, with a multidrug resistance rate of 91.0% (283/311); 99% strains were sensitive to amikacin and colistin. PCR assay indicated that the detection rate of class I integrons was 65.0% (202/311); the positive rate of class I integrons in Salmonel a strains with multidrug resistance was 92.6%; among 202 positive strains, six strains carried gene cassette dfr17-aadA5. [Conclusion] According to the above results, class I integrons exist general y in Salmonel a and are closely associated with the multidrug resistance of Salmonel a strains.
基金Supported by National Natural Science Foundation of China(No.82101101).
文摘AIM:To analyze the spectrum of isolated pathogens and antibiotic resistance for ocular infections within 5y at two tertiary hospitals in east China.METHODS:Ocular specimen data were collected from January 2019 to October 2023.The pathogen spectrum and positive culture rate for different infection location,such as keratitis,endophthalmitis,and periocular infections,along with antibiotic resistance were analyzed.RESULTS:We included 2727 specimens,including 827(30.33%)positive cultures.A total of 871 strains were isolated,530(60.85%)bacterial and 341(39.15%)fungal strains were isolated.Gram-positive cocci(GPC)were the most common ocular pathogens.The most common bacterial isolates were Staphylococcus epidermidis(25.03%),Staphylococcus aureus(7.46%),Streptococcus pneumoniae(4.59%),Corynebacterium macginleyi(3.44%),and Pseudomonas aeruginosa(3.33%).The most common fungal genera were Fusarium spp.(12.74%),Aspergillus spp.(6.54%),and Scedosporium spp.(5.74%).Staphylococcus epidermidis strains showed more than 50%resistance to fluoroquinolones.Streptococcus pneumoniae and Corynebacterium macginleyi showed more than 90%resistance to erythromycin.The percentage of bacteria showing multidrug resistance(MDR)significantly decreased(χ^(2)=17.44,P=0.002).CONCLUSION:GPC are the most common ocular pathogens.Corynebacterium macginleyi,as the fourth common bacterium,may currently be the local microbiological feature of east China.Fusarium spp.is the most common fungus.More than 50%of the GPC are resistant to fluoroquinolones,penicillins,and macrolides.However,the proportion of MDR strains has been reduced over time.
文摘Studies on structure-activity relationship of phenothiazines (PTZs) forinhibition of protein kinase C (PKC) and reversal of multidrug resistance (MDR) has been made invitro. The results showed that the order of potency of reversal effect of PTZs on MDR is as follows:2-COC_3 H_7 > 2-CF_3 > 2-COCH_3 > H. The type of piperazinyl substitution also significantlyaffected potency against MDR. The results show the order: CH_3 > COOC_2 H_5 > C_2 H_4 OH. Inaddition, PKC plays a marked role in diverse cellular process including MDR. Some derivatives of PTZwas tested for inhibition of PKC, of which PTZ11 showed the highest inhibitory effect of MDR andPKC, implying a potential reversal agent of MDR for tumor therapy in the future. We also tried toexplore the possible binding model of PTZs to PKC. Our molecular-modeling study preliminarilysuggests how these PTZs bind to PKC and provides a structural basis for the design of high affinityPKC-modulator. The infor-mation may be used in the rational design of more effective drugs.
文摘To establish a method to evaluate the effects of chemosensitizer onP-glycoprotein using ^(99m)Tc-MIBI, and observe the changes of ^(99m)Tc-MIBI uptake kinetics andP-glycoprotein levels after using verapamil in MDR human breast cells MCF-7/Adr. Methods: MDR breastcarcinoma cells, MCF-7/Adr, were incubated and different protocols were performed. Protocol Ⅰ: achemosensitizer, verapamil (10 μmol/L), was added into cell culture medium, while in control group,the same volume of DMEM was given. Cells were harvested after 2 h incubation with ^(99m)Tc-MIBI.Protocol Ⅱ: Verapamil (10 μmol/L) was added into cell culture medium and incubated for 20 min, 40min, 60 min, 80 min, 8 h, 24 h, 48 h and 72 h respectively. Cells were harvested after 2 hincubation with ^(99m)Tc-MIBI. The radioactivity of the cells was measured and P-glycoproteinexpression levels were determined with immunohistochemical stain. Results: Protocol Ⅰ: After 2hincubation with verapamil the cellular uptake of ^(99m)Tc-MIBI was remarkably higher than controlgroup (t=2.33, P 【 0.05), but there was no difference in P-glycoprotein expression levels betweentwo groups (P 】 0.05). Protocol Ⅱ: In verapamil group, ^(99m)Tc-MIBI uptake was increased withincubation time prolonging (F=58.2, P 【 0.05). When verapamil incubation time surpassed 8 h the^(99m)Tc-MIBI uptake negatively correlated to the P-glycoprotein expression levels (r=-0.73, P 【0.01). However, when incubation time was less than 80 min, there was no correlation between^(99m)Tc-MIBI accumulation and P-glycoprotein levels (r=0.16, P 】 0.05). Conclusion: ^(99m)Tc-MIBImay be used to evaluate the qualitative as well as quantitative change of P-glycoprotein expressionlevels induced by the chemosensitizer, verapamil.
文摘Objective: To study the reversal effect of neferine on adriamycin (ADM) resistant human breast cancer cell line MCF-7/ADM. Methods: The cytotoxic effect of Nef or ADM was determined by 3-[4, 5-dimethylthiazol-2.-yl], 5-diphenyl tetraxolium bromid (MTT) assay. Apoptosis and the expression of P-glycoprotein (P-gp) were detected by flow cytometry (FCM). The intracellular ADM concentration was measured by HPLC. Results: Nef at 1, 5, 10 mol/L decreased the IC50 of ADM to MCF-7/ADM from 11.63 g/mL to 4.59, 2.44, 0.27 g/mL respectively. MCF-7/ADM could resist the apoptosis induced by ADM while Nef (1-10 mol/L) could augment ADR-mediated apoptosis. Nef (10 mol/L) increased the accumulation of ADM up to 2.88 fold in MCF-7/ADM but not in sensitive cells MCF-7/S and reduced the expression of P-gp in MCF-7/ADM cells. Conclusion: Nef can circumvent multidrug resistance (MDR) of MCF-7/ADM cells and the mechanism was associated with the increase of intracellular accumulation of ADM and the reduced expression of P-gp in MCF-7/ADM cells.
文摘Background: Klebsiella spp. are bacteria of medical importance for their role in opportunistic infections which are often difficult to treat because of resistance to one or several antimicrobials. The aim of this study was to determine antimicrobial resistance due to Extended Spectrum Beta-lactamase (ESBL), Class C cephalosporinase (AmpC) and carbapenemase enzymes in Klebsiella spp. isolated from patients consulted at four hospitals. Methodology: The study was cross-sectional and descriptive. A total of 4190 non-repetitive patients specimens from 13 types of clinical specimens were analysed from February to November 2020. Two hundred and twenty-five (225) Klebsiella spp isolates were identified using API 20E and antimicrobial susceptibility testing done according to the Kirby Bauer disc diffusion method. ESBL and AmpC phenotypes were determined by the combination disc method and carbapenemases by double disc synergy method, referenced by EUCAST guidelines for the resistance testing. Results: The frequency of the species was Klebsiella pneumoniae (69%, 155/255), K. oxytoca (14%, 31/255), K. ozaenae (12%, 27/225) and K. rhinoscleromatis (5%, 11/225). Isolates were most resistant to sulphomethoxazole trimethoprim (84%, 189/225), cepaholosporins (80%, 180/225), and least resistant to carbapenems (10.7%, 24/225). Two K. oxytoca and one K. pneumoniae were resistant to all antibiotics tested. Klebsiella pneumoniae had the most multidrug resistant isolates (59.4%, 134/225). Most isolates (83.6%, 188/225) expressed at least one enzyme, while 63.6% (143/225) of the isolates expressed at least two enzymes. Some isolates were ESBL (71.6%, 161/225), carbapenemase (10.7%, 24/225) and AmpC (6.6%, 15/225) producers. Three carbapenemases (Klebsiella pneumoniae carbapenemase-KPC, Metallo-Beta Lactamase-MBL and OXA-48) were detected. Conclusion: These results revealed that resistance of Klebsiella spp. to cephalosporins is high and this may be exacerbated by co-expression of AmpC and carbapenemases aggravating associated patient morbidity and mortality. Monitoring of antimicrobial resistance of local strains is necessary for informed decisions on empirical treatment. .
文摘The ability of two dihydrostilbene derivatives erianin and chrysotoxine from Dendrobium chrysotoxum to reverse multidrug resistant (MDR) cells was investigated using murine B16 melanoma cells transfected with the human MDR 1 gene and crossresistant to vinblastine and adriamycin (B16/h MDR 1 cells). Both of the two compounds were shown to increase the accumulation of adriamycin, the P glycoprotein (P gp) substrate, in B16/h MDR 1 transfectants.
文摘ABM: To investigate the cytotoxicity of the cytokine-induced killer (CIK) cells from the post-operation patients with primary hepatocellular carcinoma (HCC) to multidrug-resistant (MDR) cell of HCC both in vitro and in vivo. METHODS: A drug-resistant cell line was established by culturing human HCC cell line Bel-7402 in complete RPMI 1640 medium with increasing concentrations of adriamycin from 10 to 2 000 nmol/L. CIK cells were obtained by inducing the peripheral blood mononuclear cells with rhlFN-γ, monoclonal anti-CD3 antibody, rhIL-1α as well as rhIL-2, which were added into the culture. To detect the cytotoxicity of the CIK cells from HCC patients, the Bel-7402/R was taken as target (T) cells and CIK cells as effect (E) cells. Cytotoxic test was performed and measured by MTT. As to in vivo test, CIK cells were transfused into patients with HCC. The tumor specimens of the patients were obtained and immunohistochemistry was carried out to detect CD3, CD45, CD45RO as well as CD68. RESULTS: A MDR 1 HCC cell line Bel-7402/R was established. Its MDR1 mRNA overexpressed which was shown by RT-PCR; the P-glycoprotein expression increased from 1.32% of parent cells to 54%. CIK cells expanded vigorously by more than 70-fold and the CD3+CD56+ increased by more than 600-fold after 3-wk incubation on average. The cytotoxicity of CIK from HCC patients to Bel-7402/R was about 50% and to L-02 below 10% (t = 8.87, P<0.01), the same as that of CIK from normal individuals. Each of the 17 patients received 1-5×1010of CIK cell transfusion. No side effects were observed. After CIK treatment, the tumor tissue nodules formed and a large amount of lymphocytes infiltrated in the liver cancer tissue and CD3, CD45, CD45RO, and CD68 increased greatly which was shown by immunohistochemistry. CONCLUSION: A stable MDR1 HCC cell line has been established which could recover from liquid nitrogen and CIK from HCC patients has strong cytotoxicity to MDR HCC cell. CIK adoptive immunotherapy is safe and has no side effects. Receivers improved their immunity to tumor evidently. CIK treatment may be a better choice for HCC patients after operation to prevent the recurrence, especially when tumors have developed drug resistance.
文摘Bacterial infections are a leading cause of morbidity and mortality among solid organ transplant recipients.Over the last two decades,various multidrug-resistant(MDR)pathogens have emerged as relevant causes of infection in this population.Although this fact reflects the spread of MDR pathogens in health care facilities worldwide,several factors relating to the care of transplant donor candidates and recipients render these patients particularly prone to the acquisition of MDR bacteria and increase the likelihood of MDR infectious outbreaks in transplant units.The awareness of this high vulnerability of transplant recipients to infection leads to the more frequent use of broad-spectrum empiric antibiotic therapy,which further contributes to the selection of drug resistance.This vicious cycle is difficult to avoid and leads to a scenario of increased complexity and narrowed therapeutic options.Infection by MDR pathogens is more frequently associated with a failure to start appropriate empiric antimicrobial ther-apy.The lack of appropriate treatment may contribute to the high mortality occurring in transplant recipients with MDR infections.Furthermore,high therapeutic failure rates have been observed in patients infected with extensively-resistant pathogens,such as carbapenemresistant Enterobacteriaceae,for which optimal treatment remains undefined.In such a context,the careful implementation of preventive strategies is of utmost importance to minimize the negative impact that MDR infections may have on the outcome of liver transplant recipients.This article reviews the current literature regarding the incidence and outcome of MDR infections in liver transplant recipients,and summarizes current preventive and therapeutic recommendations.
基金Supported by Henan Distinguished Junior Scholar Grant,No.074100510017
文摘AIM:To evaluate the effect of efflux pump inhibitors (EPIs) on multidrug resistance of Helicobacter pylori (H. pylori).METHODS: H. pylori strains were isolated and cultured on Brucella agar plates with 10% sheep's blood. The multidrug resistant (MDR) H. pylori were obtained with the inducer chloramphenicol by repeated doubling of the concentration until no colony was seen, then the susceptibilities of the MDR strains and their parents to 9 antibiotics were assessed with agar dilution tests. The present study included periods before and after the advent of the EPIs, carbonyl cyanide m-chlorophenyl hydrazone (CCCP), reserpine and pantoprazole), and the minimum inhibitory concentrations (MICs) were determined accordingly. In the same way, the effects of 5 proton pump inhibitors (PPIs), used in treatment of H. pylori infection, on MICs of antibiotics were evaluated.RESULTS: Four strains of MDR H. pylori were induced successfully, and the antibiotic susceptibilities of MDR strains were partly restored by CCCP and pantoprazole, but there was little effect of reserpine. Rabeprazole was the most effective of the 5 PPIs which could decrease the MICs of antibiotics for MDR H. pylori significantly.CONCLUSION: In vitro, some EPIs can strengthen the activities of different antibiotics which are the putative substrates of the efflux pump system in H. pylori.
基金Supported by The National Natural Science Foundation of China,No 304708651520 Project of Xinqiao Hospital
文摘AIM:To establish a multidrug-resistant hepatoma cell line(SK-Hep-1),and to investigate its biological characteristics.METHODS:A highly invasive SK-Hep-1 cell line of human hepatocellular carcinoma,also known as malignant hepatoma was incubated with a high concentration of cisplatin(CDDP) to establish a CDDP-resistant cell subline(SK-Hep-1/CDDP).The 50% inhibitory dose(IC50) values and the resistance indexes [(IC50 SK-Hep-1/CDDP)/(IC50 SK-Hep-1)] for other chemotherapeutic agents and the growth curve of cells were all evaluated using cell counting kit-8 assays.The distribution of the cell cycles were detected by flow cytometry.Expression of acquired multidrug resistance P-glycoprotein(MDR1,ABCB1) and multidrug resistance-associated protein 1(MRP1,ABCC1) was compared with that in parent cells by Western blotting and immunofluorescence combined with laser scanning confocal microscopy.RESULTS:The SK-Hep-1/CDDP cells(IC50 = 70.61 ± 1.06 μg/mL) was 13.76 times more resistant to CDDP than the SK-Hep-1 cells(IC50 = 5.13 ± 0.09 μg/mL),and CDDP-resistant cells also demonstrated cross-resistance to many anti-tumor agents such as doxorubicin,5-fluorouracil and vincristine.Similar morphologies were determined in both SK-Hep-1 and SK-Hep-1/CDDP groups.The cell cycle distribution of the SK-Hep-1/CDDP cell line exhibited a significantly increased percentage of cells in S(42.2% ± 2.65% vs 27.91% ± 2.16%,P < 0.01) and G2/M(20.67% ± 5.69% vs 12.14% ± 3.36%,P < 0.01) phases in comparison with SK-Hep-1 cells,while the percentage of cells in the G0/G1 phase decreased(37.5% ± 5.05% vs 59.83% ± 3.28%,P < 0.01).The levels of MDR1 and MRP1 were overexpressed in the SK-Hep-1/CDDP cells exhibiting the MDR phenotype.CONCLUSION:Multiple drug resistance of multiple drugs in the human hepatoma cell line SK-Hep-1/CDDP was closely related to the overexpression of MDR1 and MRP1.
基金Supported by the National Natural Science Foundation of China,No. 30400431
文摘AIM: To reverse the multidrug resistance (MDR) by RNA interference (RNAi)-mediated MDRI suppression in heparoma cells.METHODS: For reversing MDR by RNAi technology, two different short hairpin RNAs (shRNAs) were designed and constructed into pGenSil-1 plasmid, respectively. They were then transfected into a highly adriarnycin-resistant HepG2 hepatorna cell line (HepG2/ADM). The RNAi effect on MDR was evaluated by real-time PCR, cell cytotoxicity assay and rhodarnine 123 (Rh123) efflux assy. RESULTS: The stably-transfected clones showed various degrees of reversal of MDR phenotype. Surprisingly, the MDR phenotype was completely reversed in two transfected clones. CONCLUSION: MDR can be reversed by the shRNAmediated MDRI suppression in HepG2/ADM cells, which provides a valuable clue to make multidrug-resistant hepatoma cells sensitive to anti-cancer drugs.
文摘AIM: To determine whether efflux systems contribute to multidrug resistance of H pylori. METHODS: A chloramphenicol-induced multidrug resistance model of six susceptible H pylori strains (5 isolates and H pylori NCTC11637) was developed. Multidrug-resistant (MDR) strains were selected and the minimal inhibitory concentration (MIC) of eryth-romycin, metronidazole, penicillin G, tetracycline, and ciprofloxacin in multidrug resistant strains and their parent strains was determined by agar dilution tests. The level of mRNA expression of hefA was assessed by fluorescence real-time quantitative PCR. A H pylori LZ1026 knockout mutant (ΔH pylori LZ1026) for (puta-tive) efflux protein was constructed by inserting the kanamycin resistance cassette from pEGFP-N2 into hefA, and its susceptibility profiles to 10 antibiotics were evaluated. RESULTS: The MIC of six multidrug-resistant strains (including 5 clinical isolates and H pylori NCTC11637) increased signifi cantly (≥ 4-fold) compared with their parent strains. The expression level of hefA gene was significantly higher in the MDR strains than in their parent strains (P = 0.033). A H pylori LZ1026 mutant was successfully constructed and the ΔH pylori LZ1026 was more susceptible to four of the 10 antibiotics. All the 20 strains displayed transcripts for hefA that con-fi rmed the in vitro expression of these genes.CONCLUSION: The efflux pump gene hefA plays an important role in multidrug resistance of H pylori.
基金Supported by Innovation Fund of Fujian Province,No.2007-CXB-7Key Science and Technology Project of Xiamen,No.3502Z20077045
文摘AIM: To study the expression and phosphorylation of extracellular signal-regulated kinase (ERK) i and ERK2 in multidrug resistant (MDR) hepatocellular carcinoma (HCC) cells.METHODS: MDR HCC cell lines, HepG2/adriamycin (ADM) and SMMC7721/ADM, were developed by exposing parental cells to stepwise increasing concentrations of ADM. MTT assay was used to determine drug sensitivity. Flow cytometry was employed to analyze cell cycle distribution and measure cell P-glycoprotein (P-gp) and multidrug resistant protein 1 (MRP1) expression levels. ERK1 and ERK2 mRNA expression lev-ls were measured by quantitative real-time PCR (QRTPCR). Expression and phosphorylation of ERK1 and ERK2 were analyzed by Western blot.RESULTS: MTT assay showed that HepG2/ADM andSMMC7721/ADM were resistant not only to ADM, but also to multiple anticancer drugs. The P-gp expression was over 10-fold higher in HepG2/ADM cells than in HepG2 cells (8.92% ±0.22% vs 0.88% ± 0.05%, P 〈 0.001) and over 4-fold higher in SMMC7721/ADM cells than in SMMC7721 cells (7.37% ± 0.26% vs 1.74% ± 0.25%, P 〈 0.001). However, the MRP1 expression was not significantly higher in HepG2/ADM and SMMC7721/ADM cells than in parental cells. In addition, the percentage of MDR HepG2/ADM and SMMC7721/ADM cells was significantly decreased in the G0/G1 phase and increased in the the S phase or G2/M phase. QRT-PCR analysis demonstrated that the ERK1 and ERK2 mRNA expression increased apparently in HepG2/ADM cells and decreased significantly in SMMC7721/ADM cells. Compared with the expression of parental cells, ERK1 and ERK2 protein expressions were markedly decreased in SMMC7721/ADM cells. However, ERK2 protein expression was markedly increased while ERK1 protein expression had no significant change in HepG2/ADM cells. Phosphorylation of ERK1 and ERK2 was markedly decreased in both HepG2/ADM and SMMC7721/ADM MDR cells.CONCLUSION: ERK1 and ERK2 activities are downregulated in P-gp-mediated MDR HCC cells. ERK1 or ERK2 might be a potential drug target for circumventing MDR HCC cells,