We review colossal magnetoresistance in single phase manganites, as related to the field sensitive spin-charge interactions and phase separation; the rectifying property and negative/positive magnetoresistance in mang...We review colossal magnetoresistance in single phase manganites, as related to the field sensitive spin-charge interactions and phase separation; the rectifying property and negative/positive magnetoresistance in manganite/Nb:SrTio3 p-n junctions in relation to the special interface electronic structure; magnetoelectric coupling in manganite/ferroelectric structures that takes advantage of strain, carrier density, and magnetic field sensitivity; tunneling magnetoresistance in tunnel junctions with dielectric, ferroelectric, and organic semiconductor spacers using the fully spin polarized nature of manganites; and the effect of particle size on magnetic properties in manganite nanoparticles.展开更多
Voltage-controlled magnetic skyrmions have attracted special attention because they satisfy the requirements for well-controlled high-efficiency and energy saving for future skyrmion-based neuron device applications.I...Voltage-controlled magnetic skyrmions have attracted special attention because they satisfy the requirements for well-controlled high-efficiency and energy saving for future skyrmion-based neuron device applications.In this work,we propose a compact leaky-integrate-fire(LIF)spiking neuron device by using the voltage-driven skyrmion dynamics in a multiferroic nanodisk structure.The skyrmion dynamics is controlled by well tailoring voltage-induced piezostrains,where the skyrmion radius can be effectively modulated by applying the piezostrain pulses.Like the biological neuron,the proposed skyrmionic neuron will accumulate a membrane potential as skyrmion radius is varied by inputting the continuous piezostrain spikes,and the skyrmion radius will return to the initial state in the absence of piezostrain.Therefore,this skyrmion radius-based membrane potential will reach a definite threshold value by the strain stimuli and then reset by removing the stimuli.Such the LIF neuronal functionality and the behaviors of the proposed skyrmionic neuron device are elucidated through the micromagnetic simulation studies.Our results may benefit the utilization of skyrmionic neuron for constructing the future energy-efficient and voltage-tunable spiking neural networks.展开更多
Because of the wide selectivity of ferromagnetic and ferroelectric(FE)components,electric-field(E-field)control of magnetism via strain mediation can be easily realized through composite multiferroic heterostructures....Because of the wide selectivity of ferromagnetic and ferroelectric(FE)components,electric-field(E-field)control of magnetism via strain mediation can be easily realized through composite multiferroic heterostructures.Here,an MgO-based magnetic tunnel junction(MTJ)is chosen rationally as the ferromagnetic constitution and a high-activity(001)-Pb(Mg_(1/3)Nb_(2/3))_(0.7)Ti_(0.3)O_(3)(PMN-0.3PT)single crystal is selected as the FE component to create a multiferroic MTJ/FE hybrid structure.The shape of tunneling magnetoresistance(TMR)versus in situ E-fields imprints the butterfly loop of the piezo-strain of the FE without magnetic-field bias.The E-field-controlled change in the TMR ratio is up to-0.27%without magnetic-field bias.Moreover,when a typical magnetic field(~±10 Oe)is applied along the minor axis of the MTJ,the butterfly loop is changed significantly by the E-fields relative to that without magnetic-field bias.This suggests that the E-field-controlled junction resistance is spin-dependent and correlated with magnetization switching in the free layer of the MTJ.In addition,based on such a multiferroic heterostructure,a strain-gauge factor up to approximately 40 is achieved,which decreases further with a sign change from positive to negative with increasing magnetic fields.This multiferroic hybrid structure is a promising avenue to control TMR through E-fields in low-power-consumption spintronic and straintronic devices at room temperature.展开更多
Motivated by the fast-developing spin dynamics in ferromagnetic/piezoelectric structures, this study attempts to manipulate magnons (spin-wave excitations) by the converse magnetoelectric (ME) coupling. Herein, electr...Motivated by the fast-developing spin dynamics in ferromagnetic/piezoelectric structures, this study attempts to manipulate magnons (spin-wave excitations) by the converse magnetoelectric (ME) coupling. Herein, electric field (E-field) tuning magnetism, especially the surface spin wave, is accomplished in Ni/0.7Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.3PbTiO_(3) (PMN-PT) multiferroic heterostructures. The Kerr signal (directly proportional to magnetization) changes of Ni film are observed when direct current (DC) or alternative current (AC) voltage is applied to PMN-PT substrate, where the signal can be modulated breezily even without extra magnetic field (H-field) in AC-mode measurement. Deserved to be mentioned, a surface spin wave switch of “1” (i.e., “on”) and “0” (i.e., “off”) has been created at room temperature upon applying an E-field. In addition, the magnetic anisotropy of heterostructures has been investigated by E-field-induced ferromagnetic resonance (FMR) shift, and a large 490 Oe shift of FMR is determined at the angle of 45° between H-field and heterostructure plane.展开更多
Room temperature electric field controlled magnetism is extremely promising for the next-generation high-performance spintronic devices.Here,based on the ferroelectric switching driven oxygen ion migration in the Ta/C...Room temperature electric field controlled magnetism is extremely promising for the next-generation high-performance spintronic devices.Here,based on the ferroelectric switching driven oxygen ion migration in the Ta/Co/BiFeO_(3)/SrRuO_(3) heterostructures,the magnetic moment,magnetic coercive field,exchange bias field,and junction resistance are reversibly manipulated by tuning the ferroelectric polarization of the BiFeO_(3) layer.All these phenomena are consistently explained by the oxygen ion migration induced CoOx/Co redox effect,which is evidenced by the synchrotron X-ray absorption spectroscopy measurements.Interestingly,owing to the controllable ferroelectric switching dynamics of the BiFeO_(3) thin film,the magnetic coercive field of the Co thin film can be continuously and precisely tuned by controlling the ferroelectric polarization of the BiFeO_(3) thin film,and the manipulating speed of the voltage control of magnetism can be fast to 100 ns.This nonvolatile,stable,reversible,fast,and reproducible voltage control of magnetism shows great potential for designing low-power and high-speed spintronics.展开更多
The ability to control magnetic vortex is critical for their potential applications in spintronic devices.Traditional methods including magnetic field,spin-polarized current etc.have been used to flip the core and/or ...The ability to control magnetic vortex is critical for their potential applications in spintronic devices.Traditional methods including magnetic field,spin-polarized current etc.have been used to flip the core and/or reverse circulation of vortex.However,it is challenging for deterministic electric-field control of the single magnetic vortex textures with time-reversal broken symmetry and no planar magnetic anisotropy.Here it is reported that a deterministic reversal of single magnetic vortex circulation can be driven back and forth by a space-varying strain in multiferroic heterostructures,which is controlled by using a bi-axial pulsed electric field.Phase-field simulation reveals the mechanism of the emerging magnetoelastic energy with the space variation and visualizes the reversal pathway of the vortex.This deterministic electric-field control of the single magnetic vortex textures demonstrates a new approach to integrate the low-dimensional spin texture into the magnetoelectric thin film devices with low energy consumption.展开更多
§The growing demand for storage space has promoted in-depth research on magnetic performance regulation in an energy-saving way.Recently,we developed a solar control of magnetism,allowing the magnetic moment to b...§The growing demand for storage space has promoted in-depth research on magnetic performance regulation in an energy-saving way.Recently,we developed a solar control of magnetism,allowing the magnetic moment to be manipulated by sunlight instead of the magnetic field,current,or laser.Here,binary and ternary photoactive systems with different photon-to-electron conversions are proposed.The photovoltaic/magnetic heterostructures with a ternary system induce larger magnetic changes due to higher short current density(J SC)(20.92 mA·cm^(−2))compared with the binary system(11.94 mA·cm^(−2)).During the sunlight illumination,ferromagnetic resonance(FMR)shift increases by 80%(from 169.52 to 305.48 Oe)attributed to enhanced photo-induced electrons doping,and the variation of saturation magnetization(M S)is also amplified by 14%(from 9.9%to 11.3%).Furthermore,photovoltaic performance analysis and the transient absorption(TA)spectra indicate that the current density plays a major role in visible light manipulating magnetism.These findings clarify the laws of sunlight control of magnetism and lay the foundation for the next generation solar-driven magneto-optical memory applications.展开更多
基金supported by the National Natural Science Foundation of Chinathe National Basic Research Program of China(Grant Nos.2012CB922003,2011CBA00102,and 2009CB929502)
文摘We review colossal magnetoresistance in single phase manganites, as related to the field sensitive spin-charge interactions and phase separation; the rectifying property and negative/positive magnetoresistance in manganite/Nb:SrTio3 p-n junctions in relation to the special interface electronic structure; magnetoelectric coupling in manganite/ferroelectric structures that takes advantage of strain, carrier density, and magnetic field sensitivity; tunneling magnetoresistance in tunnel junctions with dielectric, ferroelectric, and organic semiconductor spacers using the fully spin polarized nature of manganites; and the effect of particle size on magnetic properties in manganite nanoparticles.
基金the National Natural Science Foundation of China(Grant Nos.11902316,51902300,and 11972333)the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LQ19F010005,LY21F010011,and LZ19A020001).
文摘Voltage-controlled magnetic skyrmions have attracted special attention because they satisfy the requirements for well-controlled high-efficiency and energy saving for future skyrmion-based neuron device applications.In this work,we propose a compact leaky-integrate-fire(LIF)spiking neuron device by using the voltage-driven skyrmion dynamics in a multiferroic nanodisk structure.The skyrmion dynamics is controlled by well tailoring voltage-induced piezostrains,where the skyrmion radius can be effectively modulated by applying the piezostrain pulses.Like the biological neuron,the proposed skyrmionic neuron will accumulate a membrane potential as skyrmion radius is varied by inputting the continuous piezostrain spikes,and the skyrmion radius will return to the initial state in the absence of piezostrain.Therefore,this skyrmion radius-based membrane potential will reach a definite threshold value by the strain stimuli and then reset by removing the stimuli.Such the LIF neuronal functionality and the behaviors of the proposed skyrmionic neuron device are elucidated through the micromagnetic simulation studies.Our results may benefit the utilization of skyrmionic neuron for constructing the future energy-efficient and voltage-tunable spiking neural networks.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52072102 and 11775224)It was also partially funded through the Open Foundation of the Hefei National Laboratory for Physical Sciences at the Microscale(Grant No.KF2020002).
文摘Because of the wide selectivity of ferromagnetic and ferroelectric(FE)components,electric-field(E-field)control of magnetism via strain mediation can be easily realized through composite multiferroic heterostructures.Here,an MgO-based magnetic tunnel junction(MTJ)is chosen rationally as the ferromagnetic constitution and a high-activity(001)-Pb(Mg_(1/3)Nb_(2/3))_(0.7)Ti_(0.3)O_(3)(PMN-0.3PT)single crystal is selected as the FE component to create a multiferroic MTJ/FE hybrid structure.The shape of tunneling magnetoresistance(TMR)versus in situ E-fields imprints the butterfly loop of the piezo-strain of the FE without magnetic-field bias.The E-field-controlled change in the TMR ratio is up to-0.27%without magnetic-field bias.Moreover,when a typical magnetic field(~±10 Oe)is applied along the minor axis of the MTJ,the butterfly loop is changed significantly by the E-fields relative to that without magnetic-field bias.This suggests that the E-field-controlled junction resistance is spin-dependent and correlated with magnetization switching in the free layer of the MTJ.In addition,based on such a multiferroic heterostructure,a strain-gauge factor up to approximately 40 is achieved,which decreases further with a sign change from positive to negative with increasing magnetic fields.This multiferroic hybrid structure is a promising avenue to control TMR through E-fields in low-power-consumption spintronic and straintronic devices at room temperature.
基金This work was supported by the National Natural Science Foundation of China(Nos.51772126,21978110,and 52171210)Jilin Province Science and Technology Development Program(Nos.20200201277JC,20200201279JC,and 20200201187JC)the Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education(Nos.2017002,2016010,2015003,and 2015011).
文摘Motivated by the fast-developing spin dynamics in ferromagnetic/piezoelectric structures, this study attempts to manipulate magnons (spin-wave excitations) by the converse magnetoelectric (ME) coupling. Herein, electric field (E-field) tuning magnetism, especially the surface spin wave, is accomplished in Ni/0.7Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.3PbTiO_(3) (PMN-PT) multiferroic heterostructures. The Kerr signal (directly proportional to magnetization) changes of Ni film are observed when direct current (DC) or alternative current (AC) voltage is applied to PMN-PT substrate, where the signal can be modulated breezily even without extra magnetic field (H-field) in AC-mode measurement. Deserved to be mentioned, a surface spin wave switch of “1” (i.e., “on”) and “0” (i.e., “off”) has been created at room temperature upon applying an E-field. In addition, the magnetic anisotropy of heterostructures has been investigated by E-field-induced ferromagnetic resonance (FMR) shift, and a large 490 Oe shift of FMR is determined at the angle of 45° between H-field and heterostructure plane.
基金supported by the National Key Research and Development Program of China(2019YFA0307900)National Natural Science Foundation of China(51790491,U21A2066,52125204,and 92163210)+1 种基金the fundamental research funds for the central universities(WK2030000035)this work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.
文摘Room temperature electric field controlled magnetism is extremely promising for the next-generation high-performance spintronic devices.Here,based on the ferroelectric switching driven oxygen ion migration in the Ta/Co/BiFeO_(3)/SrRuO_(3) heterostructures,the magnetic moment,magnetic coercive field,exchange bias field,and junction resistance are reversibly manipulated by tuning the ferroelectric polarization of the BiFeO_(3) layer.All these phenomena are consistently explained by the oxygen ion migration induced CoOx/Co redox effect,which is evidenced by the synchrotron X-ray absorption spectroscopy measurements.Interestingly,owing to the controllable ferroelectric switching dynamics of the BiFeO_(3) thin film,the magnetic coercive field of the Co thin film can be continuously and precisely tuned by controlling the ferroelectric polarization of the BiFeO_(3) thin film,and the manipulating speed of the voltage control of magnetism can be fast to 100 ns.This nonvolatile,stable,reversible,fast,and reproducible voltage control of magnetism shows great potential for designing low-power and high-speed spintronics.
基金supported by the National Key Research and Development Program of China(2016YFA0302300 and 2017YFA0206200)Basic Science Center Program of the National Natural Science Foundation of China(51788104)+5 种基金National Natural Science Foundation of China(11974052,51972028)Beijing Natural Science Foundation(Z190008)Chinese Academy of Sciences Interdisciplinary Innovation Teamfunded by the Director,Office of Science,Office of Basic Energy Sciences,Materials Science and Engineering Department of the US Department of Energy(DOE)in the Quantum Materials Program(KC2202)under Contract No.DEAC02-05CH11231the support by the Science Alliance Joint Directed Research&Development Programthe Transdisciplinary Academy Program at the University of Tennessee。
文摘The ability to control magnetic vortex is critical for their potential applications in spintronic devices.Traditional methods including magnetic field,spin-polarized current etc.have been used to flip the core and/or reverse circulation of vortex.However,it is challenging for deterministic electric-field control of the single magnetic vortex textures with time-reversal broken symmetry and no planar magnetic anisotropy.Here it is reported that a deterministic reversal of single magnetic vortex circulation can be driven back and forth by a space-varying strain in multiferroic heterostructures,which is controlled by using a bi-axial pulsed electric field.Phase-field simulation reveals the mechanism of the emerging magnetoelastic energy with the space variation and visualizes the reversal pathway of the vortex.This deterministic electric-field control of the single magnetic vortex textures demonstrates a new approach to integrate the low-dimensional spin texture into the magnetoelectric thin film devices with low energy consumption.
基金the National Key R&D Program of China(Nos.2019YFA0307900 and 2018YFB0407601)the National Natural Science Foundation of China(Nos.91964109,11534015,51802248,11804266,and 62001366)+2 种基金the National 111 Project of China(No.B14040)the Fundamental Research Funds for the Central Universities(No.xjh012019042)the China Postdoctoral Science Foundation(Nos.2018M643636).
文摘§The growing demand for storage space has promoted in-depth research on magnetic performance regulation in an energy-saving way.Recently,we developed a solar control of magnetism,allowing the magnetic moment to be manipulated by sunlight instead of the magnetic field,current,or laser.Here,binary and ternary photoactive systems with different photon-to-electron conversions are proposed.The photovoltaic/magnetic heterostructures with a ternary system induce larger magnetic changes due to higher short current density(J SC)(20.92 mA·cm^(−2))compared with the binary system(11.94 mA·cm^(−2)).During the sunlight illumination,ferromagnetic resonance(FMR)shift increases by 80%(from 169.52 to 305.48 Oe)attributed to enhanced photo-induced electrons doping,and the variation of saturation magnetization(M S)is also amplified by 14%(from 9.9%to 11.3%).Furthermore,photovoltaic performance analysis and the transient absorption(TA)spectra indicate that the current density plays a major role in visible light manipulating magnetism.These findings clarify the laws of sunlight control of magnetism and lay the foundation for the next generation solar-driven magneto-optical memory applications.