A new sol-foam-gel method was developed to fabricate La-doped BiFeO3 muttiferroic materials. It was demonstrated that a gradual increase in the content of La-doped into BiFeO3 results in its structure changing from rh...A new sol-foam-gel method was developed to fabricate La-doped BiFeO3 muttiferroic materials. It was demonstrated that a gradual increase in the content of La-doped into BiFeO3 results in its structure changing from rhombohedral to orthorhombic. A study of other property changes indicates that La-doping in BiFeO3 enhances its ferromagnetism and ferroelectricity. A temperature-dependent magnetization study suggests that the magnetic property of La-doped BiFeO3 samples varied from antiferromagnetic to ferromagnetic as the content of La-doped into BiFeO3 increased from 0 to 20%. Unique temperature-dependent zero field cooling (ZFC) and field cooling (FC) magnetization behaviors were observed in 15% La-doped BiFeO3 -- its ZFC temperature-dependent magnetization being ferromagnetic and its FC temperature- dependent magnetization being antiferromagnetic. A possible mechanism of such an interesting M-T behavior is discussed.展开更多
Films fabricated by sputter deposit are extensively used in the semiconductor, optical and optoelectronic industries. However, studies to-date have focused only on analyzing the BFO films fabricated by sputter deposit...Films fabricated by sputter deposit are extensively used in the semiconductor, optical and optoelectronic industries. However, studies to-date have focused only on analyzing the BFO films fabricated by sputter deposition. This paper’s research seeks to fill the gap in understanding the sputter effect on the target in order to fully understand the whole process of fabricating films by sputter deposition. In this study, 3 keV argon ions were continuously sputtered onto a target of multiferroic bismuth ferrite, BiFeO3, (BFO) with 5 mol% BaTiO3, in increasing time intervals. X-ray Photoelectron Spectroscopy (XPS) was applied to examine the sputtered surface after each sputter time interval. This paper makes the following findings. First, the surface-contaminant carbon was almost completely removed after 5120 seconds of sputtering. Second, the study observed two-component oxygen spectra remained after sputtering. Other than the chemi- and physic-sorbed oxygen, these two oxygen components perhaps resulted from the short and long O-Fe bonds due to the displacement of the Fe3+ ions. Third, sputtering resulted in a change of the oxidation states of bismuth from dominant Bi3+ state to equally weighted Bi3+ state and metallic Bi° state. The changes of the bismuth’s oxidation states, i.e., a non-stoichiometric BFO target might alter the film compositions deposited onto the substrate. This paper shows by introducing low pressure oxygen during the sputtering, the metallic Bio on the target can be re-oxidized.展开更多
Bio.9HOo.lFeo.9503 and Bio.9HOo.lFeo.9Tio.0503 ceramics were prepared and compared to reveal the effects of Ho and Ti codoping in BiFeO3. X-ray diffraction indicated that both ceramics had a high rhombohedral perovski...Bio.9HOo.lFeo.9503 and Bio.9HOo.lFeo.9Tio.0503 ceramics were prepared and compared to reveal the effects of Ho and Ti codoping in BiFeO3. X-ray diffraction indicated that both ceramics had a high rhombohedral perovskite phase content, and microstructural analyses showed that the grains of the Bio.9HOo.lFeo.9Tio.0503 ceramics were much smaller than those of Bio.9HOo.lFeo.9503. An electrical resistivity of more than 1 × 1014.cm at room temperature, and a magnetic hysteresis loop with a remnant magnetization 2Mr of 0.485 emu/g were obtained for Bi0.9HO0.1Fe0.9Ti0.0503; both were much higher than those of Bio.9Hoo.1Feo.9503. Changes in the defect subsystem of BiFeO3 induced by Fe-deficiency and (Ho,Ti) codoping are proposed as being responsible for the improvement in the properties.展开更多
Ceramics of Bi0.9Ba0.1Fe0.925TixO3 (x = 0.0625, 0.08125, 0.0875, and 0.11) were prepared according to two doping strategies: one is called single-step doping in which Ba and Ti were doped together in calcination, whil...Ceramics of Bi0.9Ba0.1Fe0.925TixO3 (x = 0.0625, 0.08125, 0.0875, and 0.11) were prepared according to two doping strategies: one is called single-step doping in which Ba and Ti were doped together in calcination, while the other one is called two-step doping in which Ba and Ti were doped in calcination and sintering, respectively. Compared with samples prepared with single-step doping, those prepared with two-step doping have obviously different XRD patterns and small grains, and are dramatically improved in dielectric loss, resistivity, and remnant magnetization. A low dielectric loss of 0.05 at 10(3) Hz, a high resistivity of 4x10(12) Omega.cm, and a large remnant magnetization of 1.5 emu/g, have been obtained simultaneously for Bi0.9Ba0.1Fe0.925Ti0.11O3 prepared with two-step doping. The contrast between these two doping strategies clearly reveals the importance of establishing a proper doping strategy when two or more elements are co-doped to BiFeO3.展开更多
The influence of surface polarity on the structural properties of BiFeO3 (BFO) thin films is investigated. BFO thin films are epitaxially grown on SrTiO3 (STO) (100) and polar (111) surfaces by oxygen plasma-a...The influence of surface polarity on the structural properties of BiFeO3 (BFO) thin films is investigated. BFO thin films are epitaxially grown on SrTiO3 (STO) (100) and polar (111) surfaces by oxygen plasma-assisted molecular beam epitaxy. It is shown that the crystal structure, surface morphology, and defect states of BFO films grown on STO substrates with nonpolar (001) or polar (111) surfaces perform very differently. BFO/STO (001)is a fully strained tetragonal phase with orientation relationship (001)[100]BFOII(001)[100]STO, while BFO/STO (111) is a rhombohedral phase. BFO/STO (111) has rougher surface morphology and less defect states, which results in reduced leakage current and lower dielectric loss. Moreover, BFO films on both STO (001) and STO (111) are direct band oxides with similar band gaps of 2.65 eV and 2.67 eV, respectively.展开更多
Sol-gel process was adopted to prepare BiFeO3 films.BiFeO3 films were deposited on LaNiO3 coated Si(100) substrates annealed at 500 and 550 ℃,respectively.The X-ray diffraction results reveal that BiFeO3 film has a...Sol-gel process was adopted to prepare BiFeO3 films.BiFeO3 films were deposited on LaNiO3 coated Si(100) substrates annealed at 500 and 550 ℃,respectively.The X-ray diffraction results reveal that BiFeO3 film has a rhombohedrally distorted perovskite structure with space group R3c.The film annealed at 500 ℃ has larger remnant polarization(Pr) of 35.3 μC/cm2.For the film annealed at 550 ℃,smaller remnant polarization of Pr=4.8 μC/cm^2 is observed for its low breakdown electric field.Lower leakage conduction is observed in the film annealed at 500 ℃ at low applied field.展开更多
The present study involves co-precipitation method to grow un-doped and Zr-doped bismuth iron oxide with x_(Zr)=0.10–0.30. The molar solutions of ferric chloride(FeCl_3), zirconyle chloride(ZrOCl_2), and bismut...The present study involves co-precipitation method to grow un-doped and Zr-doped bismuth iron oxide with x_(Zr)=0.10–0.30. The molar solutions of ferric chloride(FeCl_3), zirconyle chloride(ZrOCl_2), and bismuth chloride(BiCl_3) are prepared in distilled water, and are allowed to react with sodium hydroxide(Na OH). The synthesized powders are then converted into pellets, which are sintered at 500℃ for two hours in a muffle furnace. X-ray diffraction(XRD) shows multi-phase formation in un-doped and Zr doped samples. Scanning electron microscope(SEM) depicts layered structure at low Zr concentration x_(Zr)= 0.10, while uniform surface with smaller grains and voids is observed at x_(Zr)= 0.20, but at x_(Zr)= 0.30, cracks and voids become prominent. The ferromagnetic nature of the un-doped sample is observed by vibrating sample magnetometer(VSM), while paramagnetic behavior appears due to Zr doping. The ferromagnetism in un-doped sample is lost by Zr doping, which is due to the formation of additional Fe–O–Zr bonds that induce paramagnetic behavior.展开更多
Bismuth ferrite(BiFeO3)-based materials are multiferroic materials widely studied.This study reports that strong ferroelectricity and enhanced magnetic performance are simultaneously obtained in the quenched(1−x)BiFeO...Bismuth ferrite(BiFeO3)-based materials are multiferroic materials widely studied.This study reports that strong ferroelectricity and enhanced magnetic performance are simultaneously obtained in the quenched(1−x)BiFeO3−xBaTiO3(BFBT100x,x=0.2 and 0.3)ceramics.Quenching treatment can reduce the amount of defects and Fe2+ions and make the defect dipole in a random state,which is conducive to improving the ferroelectricity and magnetism.Compared with the conventional sintered samples,the quenched ceramics have higher remnant and saturation polarization.As for magnetism,the coercive field(Hc)of the quenched ceramics is smaller and the quenching treatment can increase the maximum magnetization by up to 15%.展开更多
The crystal structure,magnetic and electrical properties of Bi(0.96)Pb(0.04) FeO3 and Bi(0.92)Pb(0.04)RE(0.04)FeO3(RE=La,Sm,Dy and Yb)polycrystalline samples were prepared by the flash autocombustion techn...The crystal structure,magnetic and electrical properties of Bi(0.96)Pb(0.04) FeO3 and Bi(0.92)Pb(0.04)RE(0.04)FeO3(RE=La,Sm,Dy and Yb)polycrystalline samples were prepared by the flash autocombustion technique.X-ray diffraction(XRD)measurements show that the rare-earth doped compositions crystallized in rhombohedral symmetry of space group R3 c.The undoped sample consisted needle shape particles while rare earth substitution preferred platelet like particles as clarified from high resolution transmission electron microscopy(HRTEM).Morphological features were examined using field emission scanning electron microscopy(FESEM).Magnetization measurements showed that Yb^3+ samples possessed the highest room temperature saturation magnetization while when Bi^3+ ions were substituted by La^3+ ions,a smaller MS(0.28 emu/g)was obtained.The coexistence of ferroelectric and magnetic transitions was detected using DSC and χM,indicating the multiferroic characteristics of Bi(0.92)Pb(0.04)RE(0.04)FeO3 crystallites.The Néel temperature shifted upwards with decreasing the ionic radius of rare earth ion.Nice correlation was established between microstructure,morphology and magnetic properties in view of the contribution of magnetocrystalline and shape anisotropy in the magnetic parameters values.展开更多
文摘A new sol-foam-gel method was developed to fabricate La-doped BiFeO3 muttiferroic materials. It was demonstrated that a gradual increase in the content of La-doped into BiFeO3 results in its structure changing from rhombohedral to orthorhombic. A study of other property changes indicates that La-doping in BiFeO3 enhances its ferromagnetism and ferroelectricity. A temperature-dependent magnetization study suggests that the magnetic property of La-doped BiFeO3 samples varied from antiferromagnetic to ferromagnetic as the content of La-doped into BiFeO3 increased from 0 to 20%. Unique temperature-dependent zero field cooling (ZFC) and field cooling (FC) magnetization behaviors were observed in 15% La-doped BiFeO3 -- its ZFC temperature-dependent magnetization being ferromagnetic and its FC temperature- dependent magnetization being antiferromagnetic. A possible mechanism of such an interesting M-T behavior is discussed.
文摘Films fabricated by sputter deposit are extensively used in the semiconductor, optical and optoelectronic industries. However, studies to-date have focused only on analyzing the BFO films fabricated by sputter deposition. This paper’s research seeks to fill the gap in understanding the sputter effect on the target in order to fully understand the whole process of fabricating films by sputter deposition. In this study, 3 keV argon ions were continuously sputtered onto a target of multiferroic bismuth ferrite, BiFeO3, (BFO) with 5 mol% BaTiO3, in increasing time intervals. X-ray Photoelectron Spectroscopy (XPS) was applied to examine the sputtered surface after each sputter time interval. This paper makes the following findings. First, the surface-contaminant carbon was almost completely removed after 5120 seconds of sputtering. Second, the study observed two-component oxygen spectra remained after sputtering. Other than the chemi- and physic-sorbed oxygen, these two oxygen components perhaps resulted from the short and long O-Fe bonds due to the displacement of the Fe3+ ions. Third, sputtering resulted in a change of the oxidation states of bismuth from dominant Bi3+ state to equally weighted Bi3+ state and metallic Bi° state. The changes of the bismuth’s oxidation states, i.e., a non-stoichiometric BFO target might alter the film compositions deposited onto the substrate. This paper shows by introducing low pressure oxygen during the sputtering, the metallic Bio on the target can be re-oxidized.
基金Project supported by the National Basic Research Program of China(Grant No.2009CB939705)the National Natural Science Foundation of China(Grant No.J1210061)
文摘Bio.9HOo.lFeo.9503 and Bio.9HOo.lFeo.9Tio.0503 ceramics were prepared and compared to reveal the effects of Ho and Ti codoping in BiFeO3. X-ray diffraction indicated that both ceramics had a high rhombohedral perovskite phase content, and microstructural analyses showed that the grains of the Bio.9HOo.lFeo.9Tio.0503 ceramics were much smaller than those of Bio.9HOo.lFeo.9503. An electrical resistivity of more than 1 × 1014.cm at room temperature, and a magnetic hysteresis loop with a remnant magnetization 2Mr of 0.485 emu/g were obtained for Bi0.9HO0.1Fe0.9Ti0.0503; both were much higher than those of Bio.9Hoo.1Feo.9503. Changes in the defect subsystem of BiFeO3 induced by Fe-deficiency and (Ho,Ti) codoping are proposed as being responsible for the improvement in the properties.
基金the National Natural Science Foundation of China,the National High-tech R&D Program of China
文摘Ceramics of Bi0.9Ba0.1Fe0.925TixO3 (x = 0.0625, 0.08125, 0.0875, and 0.11) were prepared according to two doping strategies: one is called single-step doping in which Ba and Ti were doped together in calcination, while the other one is called two-step doping in which Ba and Ti were doped in calcination and sintering, respectively. Compared with samples prepared with single-step doping, those prepared with two-step doping have obviously different XRD patterns and small grains, and are dramatically improved in dielectric loss, resistivity, and remnant magnetization. A low dielectric loss of 0.05 at 10(3) Hz, a high resistivity of 4x10(12) Omega.cm, and a large remnant magnetization of 1.5 emu/g, have been obtained simultaneously for Bi0.9Ba0.1Fe0.925Ti0.11O3 prepared with two-step doping. The contrast between these two doping strategies clearly reveals the importance of establishing a proper doping strategy when two or more elements are co-doped to BiFeO3.
基金Project supported by the National Basic Research Program of China(Grant Nos.2009CB929202 and 2013CB922303)the National Natural Science Foundation of China(Grant Nos.51231007 and 11374189)+1 种基金the Funding from Shandong University,China(Grant No.2011JC006)the Electronics Technology Group Corporation of China(Grant No.CJ20130304)
文摘The influence of surface polarity on the structural properties of BiFeO3 (BFO) thin films is investigated. BFO thin films are epitaxially grown on SrTiO3 (STO) (100) and polar (111) surfaces by oxygen plasma-assisted molecular beam epitaxy. It is shown that the crystal structure, surface morphology, and defect states of BFO films grown on STO substrates with nonpolar (001) or polar (111) surfaces perform very differently. BFO/STO (001)is a fully strained tetragonal phase with orientation relationship (001)[100]BFOII(001)[100]STO, while BFO/STO (111) is a rhombohedral phase. BFO/STO (111) has rougher surface morphology and less defect states, which results in reduced leakage current and lower dielectric loss. Moreover, BFO films on both STO (001) and STO (111) are direct band oxides with similar band gaps of 2.65 eV and 2.67 eV, respectively.
基金Funded by the National Natural Science Foundation of China(No.10874075)the Key Program of Hubei Province Education Committee(No. D20082203)
文摘Sol-gel process was adopted to prepare BiFeO3 films.BiFeO3 films were deposited on LaNiO3 coated Si(100) substrates annealed at 500 and 550 ℃,respectively.The X-ray diffraction results reveal that BiFeO3 film has a rhombohedrally distorted perovskite structure with space group R3c.The film annealed at 500 ℃ has larger remnant polarization(Pr) of 35.3 μC/cm2.For the film annealed at 550 ℃,smaller remnant polarization of Pr=4.8 μC/cm^2 is observed for its low breakdown electric field.Lower leakage conduction is observed in the film annealed at 500 ℃ at low applied field.
文摘The present study involves co-precipitation method to grow un-doped and Zr-doped bismuth iron oxide with x_(Zr)=0.10–0.30. The molar solutions of ferric chloride(FeCl_3), zirconyle chloride(ZrOCl_2), and bismuth chloride(BiCl_3) are prepared in distilled water, and are allowed to react with sodium hydroxide(Na OH). The synthesized powders are then converted into pellets, which are sintered at 500℃ for two hours in a muffle furnace. X-ray diffraction(XRD) shows multi-phase formation in un-doped and Zr doped samples. Scanning electron microscope(SEM) depicts layered structure at low Zr concentration x_(Zr)= 0.10, while uniform surface with smaller grains and voids is observed at x_(Zr)= 0.20, but at x_(Zr)= 0.30, cracks and voids become prominent. The ferromagnetic nature of the un-doped sample is observed by vibrating sample magnetometer(VSM), while paramagnetic behavior appears due to Zr doping. The ferromagnetism in un-doped sample is lost by Zr doping, which is due to the formation of additional Fe–O–Zr bonds that induce paramagnetic behavior.
基金This study was supported by the National Natural Science Foundation of China (51502054)the Postdoctoral Science Foundation of China (2014M551236)the Postdoctoral Science Foundation of Heilongjiang Province (LBH-Z14083).
文摘Bismuth ferrite(BiFeO3)-based materials are multiferroic materials widely studied.This study reports that strong ferroelectricity and enhanced magnetic performance are simultaneously obtained in the quenched(1−x)BiFeO3−xBaTiO3(BFBT100x,x=0.2 and 0.3)ceramics.Quenching treatment can reduce the amount of defects and Fe2+ions and make the defect dipole in a random state,which is conducive to improving the ferroelectricity and magnetism.Compared with the conventional sintered samples,the quenched ceramics have higher remnant and saturation polarization.As for magnetism,the coercive field(Hc)of the quenched ceramics is smaller and the quenching treatment can increase the maximum magnetization by up to 15%.
文摘The crystal structure,magnetic and electrical properties of Bi(0.96)Pb(0.04) FeO3 and Bi(0.92)Pb(0.04)RE(0.04)FeO3(RE=La,Sm,Dy and Yb)polycrystalline samples were prepared by the flash autocombustion technique.X-ray diffraction(XRD)measurements show that the rare-earth doped compositions crystallized in rhombohedral symmetry of space group R3 c.The undoped sample consisted needle shape particles while rare earth substitution preferred platelet like particles as clarified from high resolution transmission electron microscopy(HRTEM).Morphological features were examined using field emission scanning electron microscopy(FESEM).Magnetization measurements showed that Yb^3+ samples possessed the highest room temperature saturation magnetization while when Bi^3+ ions were substituted by La^3+ ions,a smaller MS(0.28 emu/g)was obtained.The coexistence of ferroelectric and magnetic transitions was detected using DSC and χM,indicating the multiferroic characteristics of Bi(0.92)Pb(0.04)RE(0.04)FeO3 crystallites.The Néel temperature shifted upwards with decreasing the ionic radius of rare earth ion.Nice correlation was established between microstructure,morphology and magnetic properties in view of the contribution of magnetocrystalline and shape anisotropy in the magnetic parameters values.