We propose an ultra-simple dual-channel configuration for simultaneously evaluating two branches of a multifunctional integrated optic chip(MFIOC). In the configuration, the MFIOC is employed as a beam splitter to con...We propose an ultra-simple dual-channel configuration for simultaneously evaluating two branches of a multifunctional integrated optic chip(MFIOC). In the configuration, the MFIOC is employed as a beam splitter to construct the demodulation interferometer together with a 2 × 2 fiber coupler. Interference happens between polarization modes traveling through different channels of the MFIOC. The cross-couplings of each channel are respectively characterized by the interference peaks which distribute on opposite sides of the central interference peak. Temperature responses of the MFIOC are experimentally measured from-40°C to 80°C. Results show that the proposed configuration can achieve simultaneous dual-channel transient measurements with resolution of-90 d B and dynamic range of 90 d B. In addition, the two channels of the configuration have consistent measuring performance, and the two branches of the MFIOC have different responses to temperature variation.展开更多
基金the National Natural Science Foundation of China (Grants Nos. 61227013, 61307104,61422505)the Program for New Century Excellent Talents in University (NCET-12-0623)+2 种基金the National Key Scientific Instrument and Equipment Development Project (No. 2013YQ040815)the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20122304110022)the Heilongjiang Provincial Natural Science Foundation (No. ZD201205)
文摘We propose an ultra-simple dual-channel configuration for simultaneously evaluating two branches of a multifunctional integrated optic chip(MFIOC). In the configuration, the MFIOC is employed as a beam splitter to construct the demodulation interferometer together with a 2 × 2 fiber coupler. Interference happens between polarization modes traveling through different channels of the MFIOC. The cross-couplings of each channel are respectively characterized by the interference peaks which distribute on opposite sides of the central interference peak. Temperature responses of the MFIOC are experimentally measured from-40°C to 80°C. Results show that the proposed configuration can achieve simultaneous dual-channel transient measurements with resolution of-90 d B and dynamic range of 90 d B. In addition, the two channels of the configuration have consistent measuring performance, and the two branches of the MFIOC have different responses to temperature variation.