Multifunctional intelligent fabric plays an integral role in health management,human–machine interaction,wireless energy storage and conversion,and many other artificial intelligence fields.Herein,we demonstrate a ne...Multifunctional intelligent fabric plays an integral role in health management,human–machine interaction,wireless energy storage and conversion,and many other artificial intelligence fields.Herein,we demonstrate a newly developed MXene/polyaniline(PANI)multifunctional fabric integrated with strain sensing,electrochemical energy storage,and electromagnetic shielding properties.The multifunctional fabric-based strain sensor possesses a real-time signal response at a sizeable tensile strain of 100%with a minute strain of 0.5%,maintaining a stable and consistent signal response even after 3000 stretch–release cycles.In addition,the multifunctional fabric exhibits excellent electromagnetic shielding capabilities,achieving a total shielding effectiveness value of up to 43 dB,and in the meantime shows attractive electrochemical energy storage performance as an electrode in a supercapacitor,offering a maximum specific capacity and energy density of 522.5 mF·cm^(−2)and 18.16μWh·cm^(−2),respectively.Such a multifunctional intelligent fabric offers versatile opportunities to develop smart clothes for various artificial intelligent applications.展开更多
Herein,nickel nanocones and zinc oxide nanosheets were electroplated onto a fabric to produce multifunctional(wearable,stretchable,washable,hydrophobic,and antibacterial)materials with sensing,heating,and supercapacit...Herein,nickel nanocones and zinc oxide nanosheets were electroplated onto a fabric to produce multifunctional(wearable,stretchable,washable,hydrophobic,and antibacterial)materials with sensing,heating,and supercapacitive properties.All these functionalities are integrated into a one-layered fabric that can be used as a portable intelligent electronic textile for potential application in healthcare monitoring,smart sportswear,and energy storage.Electroplated nickel enhances the electrical conductivity and thus increases the electron charge transfer for supercapacitor applications.The integration of ZnO with the Ni-plated fabric provides pseudocapacitance via redox reactions with the electrolyte.The resistance of the Ni/ZnO fabric changes in response to external stimuli such as temperature and strain.When voltage is applied,the fabric generates heat through Joule heating,demonstrating its potential application as winter sportswear.The superior mechanical durability of the fabric was confirmed through bending and stretching tests.The hydrophobic surface prevents viruses contained in liquid droplets from infiltrating the fabric.In addition,bacterial growth is inhibited because of the antibacterial properties of the Ni/ZnO fabric and because of Joule heating.The one-layered fabric integrated with such multiple functionalities is expected to be applicable in the development of next-generation portable and wearable electronic textiles in various industries.展开更多
基金support from the National Energy-Saving and Low-Carbon Materials Production and Application Demonstration Platform Program(No.TC220H06N)and the National Natural Science Foundation of China(Nos.U20A20131 and 22209193).
文摘Multifunctional intelligent fabric plays an integral role in health management,human–machine interaction,wireless energy storage and conversion,and many other artificial intelligence fields.Herein,we demonstrate a newly developed MXene/polyaniline(PANI)multifunctional fabric integrated with strain sensing,electrochemical energy storage,and electromagnetic shielding properties.The multifunctional fabric-based strain sensor possesses a real-time signal response at a sizeable tensile strain of 100%with a minute strain of 0.5%,maintaining a stable and consistent signal response even after 3000 stretch–release cycles.In addition,the multifunctional fabric exhibits excellent electromagnetic shielding capabilities,achieving a total shielding effectiveness value of up to 43 dB,and in the meantime shows attractive electrochemical energy storage performance as an electrode in a supercapacitor,offering a maximum specific capacity and energy density of 522.5 mF·cm^(−2)and 18.16μWh·cm^(−2),respectively.Such a multifunctional intelligent fabric offers versatile opportunities to develop smart clothes for various artificial intelligent applications.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government NRF-2020R1A5A1018153,NRF-2021R1A2C2010530,2020K1A3A1A74114847,and NRF-2016M1A2A2936760。
文摘Herein,nickel nanocones and zinc oxide nanosheets were electroplated onto a fabric to produce multifunctional(wearable,stretchable,washable,hydrophobic,and antibacterial)materials with sensing,heating,and supercapacitive properties.All these functionalities are integrated into a one-layered fabric that can be used as a portable intelligent electronic textile for potential application in healthcare monitoring,smart sportswear,and energy storage.Electroplated nickel enhances the electrical conductivity and thus increases the electron charge transfer for supercapacitor applications.The integration of ZnO with the Ni-plated fabric provides pseudocapacitance via redox reactions with the electrolyte.The resistance of the Ni/ZnO fabric changes in response to external stimuli such as temperature and strain.When voltage is applied,the fabric generates heat through Joule heating,demonstrating its potential application as winter sportswear.The superior mechanical durability of the fabric was confirmed through bending and stretching tests.The hydrophobic surface prevents viruses contained in liquid droplets from infiltrating the fabric.In addition,bacterial growth is inhibited because of the antibacterial properties of the Ni/ZnO fabric and because of Joule heating.The one-layered fabric integrated with such multiple functionalities is expected to be applicable in the development of next-generation portable and wearable electronic textiles in various industries.