We propose a general multigroup model for cholera dynamics that involves both direct and indirect transmission pathways and that incorporates spatial heterogeneity. Under biologically feasible conditions, we show that...We propose a general multigroup model for cholera dynamics that involves both direct and indirect transmission pathways and that incorporates spatial heterogeneity. Under biologically feasible conditions, we show that the basic reproduction number R0 remains a sharp threshold for cholera dynamics in multigroup settings. We verify the analysis by numerical simulation results. We also perform an optimal control study to explore optimal vaccination strategy for cholera outbreaks.展开更多
The dynamic multichannel binocular visual image modeling is studied based on Internet of Things (IoT) Perception Layer, using mobile robot self-organizing network. By employing multigroup mobile robots with binocular ...The dynamic multichannel binocular visual image modeling is studied based on Internet of Things (IoT) Perception Layer, using mobile robot self-organizing network. By employing multigroup mobile robots with binocular visual system, the real visual images of the object will be obtained. Then through the mobile self-organizing network, a three-dimensional model is rebuilt by synthesizing the returned images. On this basis, we formalize a novel algorithm for multichannel binocular visual three-dimensional images based on fast three-dimensional modeling. Compared with the method based on single binocular visual system, the new algorithm can improve the Integrity and accuracy of the dynamic three-dimensional object modeling. The simulation results show that the new method can effectively accelerate the modeling speed, improve the similarity and not increase the data size.展开更多
In this paper, we explore the long time behavior of a multigroup Susceptible-Infected Susceptible (SIS) model with stochastic perturbations. The conditions for the disease to die out are obtained. Besides, we also s...In this paper, we explore the long time behavior of a multigroup Susceptible-Infected Susceptible (SIS) model with stochastic perturbations. The conditions for the disease to die out are obtained. Besides, we also show that the disease is fluctuating around the endemic equilibrium under some conditions. Moreover, there is a stationary distribution under stronger conditions. At last, some numerical simulations are applied to support our theoretical results.展开更多
In this paper,we analyze a higher-order stochastically perturbed multigroup staged-progression model for the transmission of HlV with saturated incidence rate.We obtainsufficient conditions for the existence and uniqu...In this paper,we analyze a higher-order stochastically perturbed multigroup staged-progression model for the transmission of HlV with saturated incidence rate.We obtainsufficient conditions for the existence and uniqueness of an ergodic stationary distribu-tion of positive solutions to the system by establishing a suitable stochastic Lyapunovfunction.In addition,we make up adequate conditions for complete eradication and wip-ing out the infectious disease.In a biological interpretation,the existence of a stationarydistribution implies that the disease will prevail and persist in the long term.Finally,examples and numerical simulations are introduced to validate our theoretical results.展开更多
文摘We propose a general multigroup model for cholera dynamics that involves both direct and indirect transmission pathways and that incorporates spatial heterogeneity. Under biologically feasible conditions, we show that the basic reproduction number R0 remains a sharp threshold for cholera dynamics in multigroup settings. We verify the analysis by numerical simulation results. We also perform an optimal control study to explore optimal vaccination strategy for cholera outbreaks.
基金supported by HiTech Researchand Development Program of China under Grant No.2007AA10Z235
文摘The dynamic multichannel binocular visual image modeling is studied based on Internet of Things (IoT) Perception Layer, using mobile robot self-organizing network. By employing multigroup mobile robots with binocular visual system, the real visual images of the object will be obtained. Then through the mobile self-organizing network, a three-dimensional model is rebuilt by synthesizing the returned images. On this basis, we formalize a novel algorithm for multichannel binocular visual three-dimensional images based on fast three-dimensional modeling. Compared with the method based on single binocular visual system, the new algorithm can improve the Integrity and accuracy of the dynamic three-dimensional object modeling. The simulation results show that the new method can effectively accelerate the modeling speed, improve the similarity and not increase the data size.
基金The authors are grateflfl to tile anonymous referees for carefully reading the manuscript and for important snggestions and comments, which led to the improvement of their manuscript. This research is supported by NSFC grant 11601043, China Postdoctoral Science Foundation (Grant No. 2016M590243), Jiangsu Province "333 High-Level Personnel Training Project" (Grant No. BRA2017468) and Qing Lan Project of Jiangsu Province of 2016 and 2017.
文摘In this paper, we explore the long time behavior of a multigroup Susceptible-Infected Susceptible (SIS) model with stochastic perturbations. The conditions for the disease to die out are obtained. Besides, we also show that the disease is fluctuating around the endemic equilibrium under some conditions. Moreover, there is a stationary distribution under stronger conditions. At last, some numerical simulations are applied to support our theoretical results.
基金This work is supported by the National Natural Science Foundation of China(Nos.12001090 and 11871473)Shandong Provincial Natural Science Foundation(No.ZR2019MA010)the Fundamental Research Funds for the Central Universitiesof China(No.2412020QD024).
文摘In this paper,we analyze a higher-order stochastically perturbed multigroup staged-progression model for the transmission of HlV with saturated incidence rate.We obtainsufficient conditions for the existence and uniqueness of an ergodic stationary distribu-tion of positive solutions to the system by establishing a suitable stochastic Lyapunovfunction.In addition,we make up adequate conditions for complete eradication and wip-ing out the infectious disease.In a biological interpretation,the existence of a stationarydistribution implies that the disease will prevail and persist in the long term.Finally,examples and numerical simulations are introduced to validate our theoretical results.