PbZr0.53Ti0.47O3 (PZT) ferroelectric thin films were deposited on LaNiO3 (LNO) by sol-gel method. The PbTiO3 (PT) seed layer was depos-ited between the LNO buffer layer and stainless steel (SS) substrate, which effect...PbZr0.53Ti0.47O3 (PZT) ferroelectric thin films were deposited on LaNiO3 (LNO) by sol-gel method. The PbTiO3 (PT) seed layer was depos-ited between the LNO buffer layer and stainless steel (SS) substrate, which effectively decreased the annealing temperature of LNO layer from 750 C to 650 C. X-ray diffraction (XRD) reveals that LNO layers with PT layer crystallize into a perovskite phase on annealing at 650 C for 10 min. PZT deposited on LNO buffer layer with PT seed layer exhibits good ferroelectric property.展开更多
基金supported by the National Natural Science Foundation of China (No. 50872080)Shanghai Special Foundation of Nanotechnology (No. 1052nm07300)+1 种基金Shanghai Education Development Foundation (No. 08SG41)Shanghai Leading Academic Disciplines (No. S30107)
文摘PbZr0.53Ti0.47O3 (PZT) ferroelectric thin films were deposited on LaNiO3 (LNO) by sol-gel method. The PbTiO3 (PT) seed layer was depos-ited between the LNO buffer layer and stainless steel (SS) substrate, which effectively decreased the annealing temperature of LNO layer from 750 C to 650 C. X-ray diffraction (XRD) reveals that LNO layers with PT layer crystallize into a perovskite phase on annealing at 650 C for 10 min. PZT deposited on LNO buffer layer with PT seed layer exhibits good ferroelectric property.
基金supported by the National Natural Science Foundation of China(20703016)Scientific and Technological Projects of Hunan Province,China(2010FJ6030)State Key Laboratory for Physical Chemistry of Solid Surface(Xiamen University),China~~