期刊文献+
共找到694篇文章
< 1 2 35 >
每页显示 20 50 100
A multilayer network diffusion-based model for reviewer recommendation
1
作者 黄羿炜 徐舒琪 +1 位作者 蔡世民 吕琳媛 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期700-717,共18页
With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to d... With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to deal with this problem.However,most existing approaches resort to text mining techniques to match manuscripts with potential reviewers,which require high-quality textual information to perform well.In this paper,we propose a reviewer recommendation algorithm based on a network diffusion process on a scholar-paper multilayer network,with no requirement for textual information.The network incorporates the relationship of scholar-paper pairs,the collaboration among scholars,and the bibliographic coupling among papers.Experimental results show that our proposed algorithm outperforms other state-of-the-art recommendation methods that use graph random walk and matrix factorization and methods that use machine learning and natural language processing,with improvements of over 7.62%in recall,5.66%in hit rate,and 47.53%in ranking score.Our work sheds light on the effectiveness of multilayer network diffusion-based methods in the reviewer recommendation problem,which will help to facilitate the peer-review process and promote information retrieval research in other practical scenes. 展开更多
关键词 reviewer recommendation multilayer network network diffusion model recommender systems complex networks
下载PDF
Studying the co-evolution of information diffusion,vaccination behavior and disease transmission in multilayer networks with local and global effects
2
作者 霍良安 武兵杰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期677-689,共13页
Today,with the rapid development of the internet,a large amount of information often accompanies the rapid transmission of disease outbreaks,and increasing numbers of scholars are studying the relationship between inf... Today,with the rapid development of the internet,a large amount of information often accompanies the rapid transmission of disease outbreaks,and increasing numbers of scholars are studying the relationship between information and the disease transmission process using complex networks.In fact,the disease transmission process is very complex.Besides this information,there will often be individual behavioral measures and other factors to consider.Most of the previous research has aimed to establish a two-layer network model to consider the impact of information on the transmission process of disease,rarely divided into information and behavior,respectively.To carry out a more in-depth analysis of the disease transmission process and the intrinsic influencing mechanism,this paper divides information and behavior into two layers and proposes the establishment of a complex network to study the dynamic co-evolution of information diffusion,vaccination behavior,and disease transmission.This is achieved by considering four influential relationships between adjacent layers in multilayer networks.In the information layer,the diffusion process of negative information is described,and the feedback effects of local and global vaccination are considered.In the behavioral layer,an individual's vaccination behavior is described,and the probability of an individual receiving a vaccination is influenced by two factors:the influence of negative information,and the influence of local and global disease severity.In the disease layer,individual susceptibility is considered to be influenced by vaccination behavior.The state transition equations are derived using the micro Markov chain approach(MMCA),and disease prevalence thresholds are obtained.It is demonstrated through simulation experiments that the negative information diffusion is less influenced by local vaccination behavior,and is mainly influenced by global vaccination behavior;vaccination behavior is mainly influenced by local disease conditions,and is less influenced by global disease conditions;the disease transmission threshold increases with the increasing vaccination rate;and the scale of disease transmission increases with the increasing negative information diffusion rate and decreases with the increasing vaccination rate.Finally,it is found that when individual vaccination behavior considers both the influence of negative information and disease,it can increase the disease transmission threshold and reduce the scale of disease transmission.Therefore,we should resist the diffusion of negative information,increase vaccination proportions,and take appropriate protective measures in time. 展开更多
关键词 information diffusion vaccination behavior disease transmission multilayer networks local and global effect
下载PDF
Improving the spaceborne GNSS-R altimetric precision based on the novel multilayer feedforward neural network weighted joint prediction model
3
作者 Yiwen Zhang Wei Zheng Zongqiang Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期271-284,共14页
Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at... Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at the global scale required for underwater navigation.At present,there are still research gaps for GNSS-R altimetry under this mode,and its altimetric capability cannot be specifically assessed.Therefore,GNSS-R satellite constellations that meet the global altimetry needs to be designed.Meanwhile,the matching precision prediction model needs to be established to quantitatively predict the GNSS-R constellation altimetric capability.Firstly,the GNSS-R constellations altimetric precision under different configuration parameters is calculated,and the mechanism of the influence of orbital altitude,orbital inclination,number of satellites and simulation period on the precision is analyzed,and a new multilayer feedforward neural network weighted joint prediction model is established.Secondly,the fit of the prediction model is verified and the performance capability of the model is tested by calculating the R2 value of the model as 0.9972 and the root mean square error(RMSE)as 0.0022,which indicates that the prediction capability of the model is excellent.Finally,using the novel multilayer feedforward neural network weighted joint prediction model,and considering the research results and realistic costs,it is proposed that when the constellation is set to an orbital altitude of 500 km,orbital inclination of 75and the number of satellites is 6,the altimetry precision can reach 0.0732 m within one year simulation period,which can meet the requirements of underwater navigation precision,and thus can provide a reference basis for subsequent research on spaceborne GNSS-R sea surface altimetry. 展开更多
关键词 GNSS-R satellite constellations Sea surface altimetric precision Underwater navigation multilayer feedforward neural network
下载PDF
A Multilayer Perceptron Artificial Neural Network Study of Fatal Road Traffic Crashes
4
作者 Ed Pearson III Aschalew Kassu +1 位作者 Louisa Tembo Oluwatodimu Adegoke 《Journal of Data Analysis and Information Processing》 2024年第3期419-431,共13页
This paper examines the relationship between fatal road traffic accidents and potential predictors using multilayer perceptron artificial neural network (MLANN) models. The initial analysis employed twelve potential p... This paper examines the relationship between fatal road traffic accidents and potential predictors using multilayer perceptron artificial neural network (MLANN) models. The initial analysis employed twelve potential predictors, including traffic volume, prevailing weather conditions, roadway characteristics and features, drivers’ age and gender, and number of lanes. Based on the output of the model and the variables’ importance factors, seven significant variables are identified and used for further analysis to improve the performance of models. The model is optimized by systematically changing the parameters, including the number of hidden layers and the activation function of both the hidden and output layers. The performances of the MLANN models are evaluated using the percentage of the achieved accuracy, R-squared, and Sum of Square Error (SSE) functions. 展开更多
关键词 Artificial Neural network multilayer Perceptron Fatal Crash Traffic Safety
下载PDF
Adaptable and Dynamic Access Control Decision-Enforcement Approach Based on Multilayer Hybrid Deep Learning Techniques in BYOD Environment
5
作者 Aljuaid Turkea Ayedh M Ainuddin Wahid Abdul Wahab Mohd Yamani Idna Idris 《Computers, Materials & Continua》 SCIE EI 2024年第9期4663-4686,共24页
Organizations are adopting the Bring Your Own Device(BYOD)concept to enhance productivity and reduce expenses.However,this trend introduces security challenges,such as unauthorized access.Traditional access control sy... Organizations are adopting the Bring Your Own Device(BYOD)concept to enhance productivity and reduce expenses.However,this trend introduces security challenges,such as unauthorized access.Traditional access control systems,such as Attribute-Based Access Control(ABAC)and Role-Based Access Control(RBAC),are limited in their ability to enforce access decisions due to the variability and dynamism of attributes related to users and resources.This paper proposes a method for enforcing access decisions that is adaptable and dynamic,based on multilayer hybrid deep learning techniques,particularly the Tabular Deep Neural Network Tabular DNN method.This technique transforms all input attributes in an access request into a binary classification(allow or deny)using multiple layers,ensuring accurate and efficient access decision-making.The proposed solution was evaluated using the Kaggle Amazon access control policy dataset and demonstrated its effectiveness by achieving a 94%accuracy rate.Additionally,the proposed solution enhances the implementation of access decisions based on a variety of resource and user attributes while ensuring privacy through indirect communication with the Policy Administration Point(PAP).This solution significantly improves the flexibility of access control systems,making themmore dynamic and adaptable to the evolving needs ofmodern organizations.Furthermore,it offers a scalable approach to manage the complexities associated with the BYOD environment,providing a robust framework for secure and efficient access management. 展开更多
关键词 BYOD security access control access control decision-enforcement deep learning neural network techniques TabularDNN multilayer dynamic adaptable FLEXIBILITY bottlenecks performance policy conflict
下载PDF
Nodes and layers PageRank centrality for multilayer networks 被引量:4
6
作者 Lai-Shui Lv Kun Zhang +1 位作者 Ting Zhang Meng-Yue Ma 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第2期129-136,共8页
In this paper, we propose a new centrality algorithm that can simultaneously rank the nodes and layers of multilayer networks, referred to as the MRFNL centrality. The centrality of nodes and layers are obtained by de... In this paper, we propose a new centrality algorithm that can simultaneously rank the nodes and layers of multilayer networks, referred to as the MRFNL centrality. The centrality of nodes and layers are obtained by developing a novel iterative algorithm for computing a set of tensor equations. Under some conditions, the existence and uniqueness of this centrality were proven by applying the Brouwer fixed point theorem. Furthermore, the convergence of the proposed iterative algorithm was established. Finally, numerical experiments on a simple multilayer network and two real-world multilayer networks(i.e., Pierre Auger Collaboration and European Air Transportation Networks) are proposed to illustrate the effectiveness of the proposed algorithm and to compare it to other existing centrality measures. 展开更多
关键词 multilayer networks PAGERANK CENTRALITY random WALKS transition probability TENSORS
下载PDF
Traffic dynamics on multilayer networks 被引量:3
7
作者 Jiexin Wu Cunlai Pu +1 位作者 Lunbo Li Guo Cao 《Digital Communications and Networks》 SCIE 2020年第1期58-63,共6页
Many real-world networks are demonstrated to either have layered network structures in themselves or interconnect with other networks,forming multilayer network structures.In this survey,we give a brief review of rece... Many real-world networks are demonstrated to either have layered network structures in themselves or interconnect with other networks,forming multilayer network structures.In this survey,we give a brief review of recent progress in traffic dynamics on multilayer networks.First,we introduce several typical multilayer network models.Then,we present some mainstream performance indicators,such as network capacity,average transmission time,etc.Moreover,we discuss some optimization strategies for improving the transmission performance.Finally,we provide some open issues that could be further explored in the future. 展开更多
关键词 multilayer network Traffic dynamics network model Routing strategy
下载PDF
Network Aggregation Process in Multilayer Air Transportation Networks 被引量:1
8
作者 江健 张瑞 +2 位作者 郭龙 李炜 蔡勖 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第10期172-176,共5页
The air transportation network, one of the common multilayer complex systems, is composed of a collection of individual airlines, and each airline corresponds to a different layer. An important question is then how ma... The air transportation network, one of the common multilayer complex systems, is composed of a collection of individual airlines, and each airline corresponds to a different layer. An important question is then how many airlines are really necessary to represent the optimal structure of a multilayer air transportation system. Here we take the Chinese air transportation network (CATN) as an example to explore the nature of multiplex systems through the procedure of network aggregation. Specifically, we propose a series of structural measures to characterize the CATN from the multilayered to the aggregated network level. We show how these measures evolve during the network aggregation process in which layers are gradually merged together and find that there is an evident structural transition that happened in the aggregated network with nine randomly chosen airlines merged, where the network features and construction cost of this network are almost equivalent to those of the present CATN with twenty-two airlines under this condition. These findings could shed some light on network structure optimization and management of the Chinese air transportation system. 展开更多
关键词 in or on IS of network Aggregation Process in multilayer Air Transportation networks that
下载PDF
Near-infrared Spectral Detection of the Content of Soybean Fat Acids Based on Genetic Multilayer Feed forward Neural Network 被引量:1
9
作者 CHAIYu-hua PANWei NINGHai-long 《Journal of Northeast Agricultural University(English Edition)》 CAS 2005年第1期74-78,共5页
In the paper, a method of building mathematic model employing genetic multilayer feed forward neural network is presented, and the quantitative relationship of chemical measured values and near-infrared spectral data ... In the paper, a method of building mathematic model employing genetic multilayer feed forward neural network is presented, and the quantitative relationship of chemical measured values and near-infrared spectral data is established. In the paper, quantitative mathematic model related chemical assayed values and near-infrared spectral data is established by means of genetic multilayer feed forward neural network, acquired near-infrared spectral data are taken as input of network with the content of five kinds of fat acids tested from chemical method as output, weight values of multilayer feed forward neural network are trained by genetic algorithms and detection model of neural network of soybean is built. A kind of multilayer feed forward neural network trained by genetic algorithms is designed in the paper. Through experiments, all the related coefficients of five fat acids can approach 0.9 which satisfies the preliminary test of soybean breeding. 展开更多
关键词 near infrared multilayer feed forward neural network genetic algorithms SOYBEAN fat acid
下载PDF
Analysis of overload-based cascading failure in multilayer spatial networks 被引量:1
10
作者 Min Zhang Xiao-Juan Wang +2 位作者 Lei Ji Mei Song Zhong-Hua Liao 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第9期404-414,共11页
Many complex networks in real life are embedded in space and most infrastructure networks are interdependent,such as the power system and the transport network.In this paper,we construct two cascading failure models o... Many complex networks in real life are embedded in space and most infrastructure networks are interdependent,such as the power system and the transport network.In this paper,we construct two cascading failure models on the multilayer spatial network.In our research,the distance l between nodes within the layer obeys the exponential distribution P(l)~exp(-l/ζ),and the length r of dependency link between layers is defined according to node position.An entropy approach is applied to analyze the spatial network structure and reflect the difference degree between nodes.Two metrics,namely dynamic network size and dynamic network entropy,are proposed to evaluate the spatial network robustness and stability.During the cascading failure process,the spatial network evolution is analyzed,and the numbers of failure nodes caused by different reasons are also counted,respectively.Besides,we discuss the factors affecting network robustness.Simulations demonstrate that the larger the values of average degree<k>,the stronger the network robustness.As the length r decreases,the network performs better.When the probability p is small,asζdecreases,the network robustness becomes more reliable.When p is large,the network robustness manifests better performance asζincreases.These results provide insight into enhancing the robustness,maintaining the stability,and adjusting the difference degree between nodes of the embedded spatiality systems. 展开更多
关键词 cascading failure multilayer network load distribution spatial network ENTROPY
下载PDF
Identification Simulation for Dynamical System Based on Genetic Algorithm and Recurrent Multilayer Neural Network 被引量:1
11
作者 鄢田云 张翠芳 靳蕃 《Journal of Southwest Jiaotong University(English Edition)》 2003年第1期9-15,共7页
Identification simulation for dynamical system which is based on genetic algorithm (GA) and recurrent multilayer neural network (RMNN) is presented. In order to reduce the inputs of the model, RMNN which can remember ... Identification simulation for dynamical system which is based on genetic algorithm (GA) and recurrent multilayer neural network (RMNN) is presented. In order to reduce the inputs of the model, RMNN which can remember and store some previous parameters is used for identifier. And for its high efficiency and optimization, genetic algorithm is introduced into training RMNN. Simulation results show the effectiveness of the proposed scheme. Under the same training algorithm, the identification performance of RMNN is superior to that of nonrecurrent multilayer neural network (NRMNN). 展开更多
关键词 genetic algorithm recurrent multilayer neural network IDENTIFICATION SIMULATION
下载PDF
Preliminary Biometrics of ECG Signal Based on Temporal Organization through the Implementation of a Multilayer Perceptron Neural Network 被引量:1
12
作者 Robert LeMoyne Timothy Mastroianni 《Journal of Biomedical Science and Engineering》 2021年第12期435-441,共7页
The attributes of the ECG signal signifying the unique electrical properties of the heart offer the opportunity to expand the realm of biometrics, which pertains the identification of an individual based on physical c... The attributes of the ECG signal signifying the unique electrical properties of the heart offer the opportunity to expand the realm of biometrics, which pertains the identification of an individual based on physical characteristics. The temporal organization of the ECG signal offers a basis for composing a machine learning feature set. The four attributes of the feature set are derived through software automation enabled by Python. These four attributes are the temporal differential of the P wave maximum and T wave maximum relative to the R wave maximum and the Q wave minimum and S wave minimum relative to the R wave maximum. The multilayer perceptron neural network was applied and evaluated in terms of classification accuracy and time to develop the model. Superior performance was achieved with respect to a reduced feature set considering only the temporal differential of the P wave maximum and T wave maximum relative to the R wave maximum by comparison to all four attributes applied to the feature set and the temporal differential of the Q wave minimum and S wave minimum relative to the R wave maximum. With these preliminary findings and the advent of portable and wearable devices for the acquisition of the ECG signal, the temporal organization of the ECG signal offers robust potential for the field of biometrics. 展开更多
关键词 ECG Signal BIOMETRICS multilayer Perceptron Neural network Machine Learning Signal Analysis
下载PDF
AN EFFECTIVE NETWORK CONGESTION CONTROL METHOD FOR MULTILAYER NETWORK 被引量:1
13
作者 Du Haifeng Xiao Yang Lu Lingyun 《Journal of Electronics(China)》 2008年第4期488-494,共7页
The congestion control problem in a single node network has been solved by the nonlinearfeedback control method,which has been proven to be effective and robust for different router’s queuesize.However,these control ... The congestion control problem in a single node network has been solved by the nonlinearfeedback control method,which has been proven to be effective and robust for different router’s queuesize.However,these control models are based on the single layer network architecture,and the sendersand receivers are directly connected by one pair of routers.With the network architecture being moreand more complex,it is a serious problem how to cooperate many routers working in the multilayernetwork simultaneously.In this paper,an effective Active Queue Management(AQM)scheme toguarantee the stability by the nonlinear control of imposing some restrictions on AQM parameter inmultilayer network is proposed.The nonlinear control can rely on some heuristics and network trafficcontrollers that appear to be highly correlated with the multilayer network status.The proposedmethod is based on the improved classical Random Early Detection(RED)differential equation and atheorem for network congestion control.The theorem proposed in the paper proved that the stability ofthe fluid model can effectively ensure the convergence of the average rate to its equilibrium pointthrough many routers in multilayer network.Moreover,when the network capacity is larger,theproposed scheme can still approach to the fullest extensibility of utilization and ensure the stability ofthe fluid model.The paper reveals the reasons of congestion control in multilayer network,provides atheorem for avoiding network congestion,and gives simulations to verify the results. 展开更多
关键词 Active Queue Management (AQM) Nonlinear control Transmission Control Protocol (TCP) Random Early Detection (RED) multilayer network
下载PDF
A Second Order Training Algorithm for Multilayer Feedforward Neural Networks
14
作者 谭营 何振亚 邓超 《Journal of Southeast University(English Edition)》 EI CAS 1997年第1期32-36,共5页
ASecondOrderTrainingAlgorithmforMultilayerFeedforwardNeuralNetworksTanYing(谭营)HeZhenya(何振亚)(DepartmentofRad... ASecondOrderTrainingAlgorithmforMultilayerFeedforwardNeuralNetworksTanYing(谭营)HeZhenya(何振亚)(DepartmentofRadioEngineering,Sou... 展开更多
关键词 multilayer FEEDFORWARD NEURAL networks SECOND order TRAINING ALGORITHM BP ALGORITHM learning factors XOR problem
下载PDF
NETWORK ANALYSIS OF EIGENVALUE PROBLEM FOR MULTILAYER DIELECTRIC WAVEGUIDE CONSISTING OF ARBITRARY NUMBER OF LAYERS
15
作者 徐善驾 《Journal of Electronics(China)》 1989年第1期50-58,共9页
In this paper,the eigenvalue problem of a multilayer dielectric waveguide consisting of arbitrarynumber of layers is solved by the microwave network method.A general program with the function of com-puter graphics has... In this paper,the eigenvalue problem of a multilayer dielectric waveguide consisting of arbitrarynumber of layers is solved by the microwave network method.A general program with the function of com-puter graphics has been developed for analyzing the dispersion characteristics and the electromagnetic fielddistributions of an N layer dielectric waveguide.As an example of practical applications,the procedure ofmode conversion and mode separation in dielectric branching waveguides is vividly demonstrated throughanalyzing the field distributions of asymmetric multilayer dielectric structures and the general rules of modeconversion are discussed. 展开更多
关键词 multilayer dielectric WAVEGUIDE EIGENVALUE problem network analysis
下载PDF
Cascading failure in multilayer networks with dynamic dependency groups*
16
作者 Lei Jin Xiaojuan Wang +1 位作者 Yong Zhang and Jingwen You 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第9期645-651,共7页
The cascading failure often occurs in real networks. It is significant to analyze the cascading failure in the complex network research. The dependency relation can change over time. Therefore, in this study, we inves... The cascading failure often occurs in real networks. It is significant to analyze the cascading failure in the complex network research. The dependency relation can change over time. Therefore, in this study, we investigate the cascading fail- ure in multilayer networks with dynamic dependency groups. We construct a model considering the recovery mechanism. In our model, two effects between layers are defined. Under Effect 1, the dependent nodes in other layers will be disabled as long as one node does not belong to the largest connected component in one layer. Under Effect 2, the dependent nodes in other layers will recover when one node belongs to the largest connected component. The theoretical solution of the largest component is deduced and the simulation results verify our theoretical solution. In the simulation, we analyze the influence factors of the network robustness, including the fraction of dependent nodes and the group size, in our model. It shows that increasing the fraction of dependent nodes and the group size will enhance the network robustness under Effect 1. On the contrary, these will reduce the network robustness under Effect 2. Meanwhile, we find that the tightness of the network connection will affect the robustness of networks. Furthermore, setting the average degree of network as 8 is enough to keep the network robust. 展开更多
关键词 cascading failure dependency group multilayer network
下载PDF
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using a Hybrid Model Based on Artificial Neural Network and Evolutionary Algorithm
17
作者 LIU Yang HU Shaochuang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期458-475,共18页
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv... A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors. 展开更多
关键词 semitransparent medium coupled conduction-radiation heat transfer thermophysical properties simultaneous identification multilayer artificial neural networks(ANNs) evolutionary algorithm hybrid identification model
下载PDF
THE APPLICATION OF MULTILAYER FEEDFORWARD NETWORK FOR IMAGE SEGMENTATION
18
作者 吴小培 柴晓冬 张德龙 《Journal of Electronics(China)》 1995年第4期304-311,共8页
The multilayer feedforward network is used for image segmentation. This paper deals with the procedure of achieving the learning patterns and the method of improving the learning rate. The experiment shows that the im... The multilayer feedforward network is used for image segmentation. This paper deals with the procedure of achieving the learning patterns and the method of improving the learning rate. The experiment shows that the image segmentation can get better result from using the multilayer feedforward network. 展开更多
关键词 IMAGE processing multilayer FEEDFORWARD network(MLFN) IMAGE SEGMENTATION BP algorithm
下载PDF
Multilayer Hex-Cells: A New Class of Hex-Cell Interconnection Networks for Massively Parallel Systems
19
作者 Mohammad Qatawneh 《International Journal of Communications, Network and System Sciences》 2011年第11期704-708,共5页
Scalability is an important issue in the design of interconnection networks for massively parallel systems. In this paper a scalable class of interconnection network of Hex-Cell for massively parallel systems is intro... Scalability is an important issue in the design of interconnection networks for massively parallel systems. In this paper a scalable class of interconnection network of Hex-Cell for massively parallel systems is introduced. It is called Multilayer Hex-Cell (MLH). A node addressing scheme and routing algorithm are also presented and discussed. An interesting feature of the proposed MLH is that it maintains a constant network degree regardless of the increase in the network size degree which facilitates modularity in building blocks of scalable systems. The new addressing node scheme makes the proposed routing algorithm simple and efficient in terms of that it needs a minimum number of calculations to reach the destination node. Moreover, the diameter of the proposed MLH is less than Hex-Cell network. 展开更多
关键词 multilayer Hex-Cell INTERCONNECTION network PARALLEL System
下载PDF
Blind Equalization Using a Hybrid Algorithm of Multilayer Neural Network
20
作者 梁启联 《High Technology Letters》 EI CAS 1996年第1期47-50,共4页
A novel blind equalization scheme based on multilayer neural network and Higher OrderCumulants(HOC)is proposed in the paper.The training of the neural network uses a newhybrid algorithm which has strict convex charact... A novel blind equalization scheme based on multilayer neural network and Higher OrderCumulants(HOC)is proposed in the paper.The training of the neural network uses a newhybrid algorithm which has strict convex character(after a threshold)and converges muchfaster than the CMA algorithm.The inverse channel is built on the basis of the estimatedchannel and the training of neural network.The scheme can be used in nonlinear and timevarying channel and to deal with PAM or QAM signals.Simulation results Show that it per-forms well for blind equalization. 展开更多
关键词 BLIND EQUALIZATION multilayer neural network HIGHER order CUMULANTS Hybrid algorithm CONVEX CHARACTER
下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部