The multi-layer ceramic capacitor (MLCC) alignment system aims at the inter-process automation between the first and the second plastic processes.As a result of testing performance verification of MLCC alignment syste...The multi-layer ceramic capacitor (MLCC) alignment system aims at the inter-process automation between the first and the second plastic processes.As a result of testing performance verification of MLCC alignment system,the average alignment rates are 95% for 3216 chip,88.5% for 2012 chip and 90.8% for 3818 chip.The MLCC alignment system can be accepted for practical use because the average manual alignment is just 80%.In other words,the developed MLCC alignment system has been upgraded to a great extent,compared with manual alignment.Based on the successfully developed MLCC alignment system,the optimal transfer conditions have been explored by using RSM.The simulations using ADAMS has been performed according to the cube model of CCD.By using MiniTAB,the model of response surface has been established based on the simulation results.The optimal conditions resulted from the response optimization tool of MiniTAB has been verified by being assigned to the prototype of MLCC alignment system.展开更多
近年来,随着技术逐渐成熟,在欧美等国,BME MLCC已经逐渐进入宇航应用领域。相对传统的PME MLCC,BM E M LCC具有缓慢老化失效模式、介质减薄等特性,也存在可靠性风险。从"初步评估、详细评估、鉴定检验"宇航鉴定思路出发,结合...近年来,随着技术逐渐成熟,在欧美等国,BME MLCC已经逐渐进入宇航应用领域。相对传统的PME MLCC,BM E M LCC具有缓慢老化失效模式、介质减薄等特性,也存在可靠性风险。从"初步评估、详细评估、鉴定检验"宇航鉴定思路出发,结合电容器失效模式和失效机理,分析AEC-Q200、MIL-PRF-32535、NASA S-311-P-838等标准试验项目,对比PME MLCC与BME MLCC通用规范要求。在鉴定范围和材料结构要求、结构分析和生产一致性、长寿命可靠性、环境适应性等方面,提出了面向方案设计的BME MLCC宇航鉴定关键技术。展开更多
High temperature capacitance variance of multi-layer ceramic capacitor (MLCC) is researched.Combined with the characteristics of MLCC,the application of MLCC in fuze is proposed,and the temperature stability of MLCC...High temperature capacitance variance of multi-layer ceramic capacitor (MLCC) is researched.Combined with the characteristics of MLCC,the application of MLCC in fuze is proposed,and the temperature stability of MLCC is also discussed.The experimental results indicate that the capacitance of low frequency MLCC is largely affected by temperature.展开更多
0.5 wt%Nb_(2)O_(5)doped 0.12BiAlO_(3)-0.88BaTiO_(3)(12BA5N)multilayer ceramic capacitor(MLCC-1)was prepared,which satisfied EIA X7R specification(where X is the minimum temperature,R is the percentage of capacitance v...0.5 wt%Nb_(2)O_(5)doped 0.12BiAlO_(3)-0.88BaTiO_(3)(12BA5N)multilayer ceramic capacitor(MLCC-1)was prepared,which satisfied EIA X7R specification(where X is the minimum temperature,R is the percentage of capacitance variation limit)at 1 kHZ.The distribution of internal electric field under breakdown voltage was simulated by finite element method(FEM),indicating that the electric field strength increased significantly at the terminal of internal electrode.These areas may become the headstream of breakdown for MLCC-1 due to the shape mutation.In order to improve the breakdown performance of MLCC-1,it was optimized by 12BA5N+2G green sheets(prepared by 12BA5N ceramic powder with 2 wt%B-Al-Si glass additive),then MLCC-2 was obtained which satisfied EIA X8R specification.Its BDS rose from 20 to29.4 kV·mm^(-1),and the electric field distribution of dielectric layer was also analyzed by FEM.Besides,it was also found that the grain size and the dielectric constants of"core"and"shell"parts for the 12BA5N+2G dielectric layer both contributed to the enhanced BDS of MLCC-2according to the simulation results from FEM.展开更多
Local electric-field around multitype pores(dielectric pore,interface pore,electrode pore)in multilayer ceramic capacitors(MLCCs)was investigated using Kelvin probe force microscopy combined with the finite element si...Local electric-field around multitype pores(dielectric pore,interface pore,electrode pore)in multilayer ceramic capacitors(MLCCs)was investigated using Kelvin probe force microscopy combined with the finite element simulation to understand the effect of pores on the electric reliability of MLCCs.Electricfield is found to be concentrated significantly in the vicinity of these pores and the strength of the local electric-field is 1.5e5.0 times of the nominal strength.Unexpectedly,the concentration degree of the pores in the inner electrode is much higher than that in the dielectrics and dielectric-electrode interfaces.Meanwhile,geometry orientations are found to have a remarkable influence on the local electric field strength.The pores act as an insulation degradation precursor via local electric,thermal center,and oxygen vacancies accumulation center.Such unusual local electric field concentration of multitype pores can provide new insights into the understanding of insulation degradation evolution,processing tailoring and design optimization for MLCCs.展开更多
基金supported by the Second Stage of Brain Korea 21 Projectssupported (in part) by the Solomon Mechanics Inc
文摘The multi-layer ceramic capacitor (MLCC) alignment system aims at the inter-process automation between the first and the second plastic processes.As a result of testing performance verification of MLCC alignment system,the average alignment rates are 95% for 3216 chip,88.5% for 2012 chip and 90.8% for 3818 chip.The MLCC alignment system can be accepted for practical use because the average manual alignment is just 80%.In other words,the developed MLCC alignment system has been upgraded to a great extent,compared with manual alignment.Based on the successfully developed MLCC alignment system,the optimal transfer conditions have been explored by using RSM.The simulations using ADAMS has been performed according to the cube model of CCD.By using MiniTAB,the model of response surface has been established based on the simulation results.The optimal conditions resulted from the response optimization tool of MiniTAB has been verified by being assigned to the prototype of MLCC alignment system.
文摘近年来,随着技术逐渐成熟,在欧美等国,BME MLCC已经逐渐进入宇航应用领域。相对传统的PME MLCC,BM E M LCC具有缓慢老化失效模式、介质减薄等特性,也存在可靠性风险。从"初步评估、详细评估、鉴定检验"宇航鉴定思路出发,结合电容器失效模式和失效机理,分析AEC-Q200、MIL-PRF-32535、NASA S-311-P-838等标准试验项目,对比PME MLCC与BME MLCC通用规范要求。在鉴定范围和材料结构要求、结构分析和生产一致性、长寿命可靠性、环境适应性等方面,提出了面向方案设计的BME MLCC宇航鉴定关键技术。
文摘High temperature capacitance variance of multi-layer ceramic capacitor (MLCC) is researched.Combined with the characteristics of MLCC,the application of MLCC in fuze is proposed,and the temperature stability of MLCC is also discussed.The experimental results indicate that the capacitance of low frequency MLCC is largely affected by temperature.
基金financially supported by Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(No.XHT2020-011)the Major Program of the Natural Science Foundation of China(No.51790490)+1 种基金Sanya Science and Education Innovation Park of Wuhan University of Technology(No.2020KF0017)Guangdong Basic and Applied Basic Research Foundation(No.2021A1515110060)。
文摘0.5 wt%Nb_(2)O_(5)doped 0.12BiAlO_(3)-0.88BaTiO_(3)(12BA5N)multilayer ceramic capacitor(MLCC-1)was prepared,which satisfied EIA X7R specification(where X is the minimum temperature,R is the percentage of capacitance variation limit)at 1 kHZ.The distribution of internal electric field under breakdown voltage was simulated by finite element method(FEM),indicating that the electric field strength increased significantly at the terminal of internal electrode.These areas may become the headstream of breakdown for MLCC-1 due to the shape mutation.In order to improve the breakdown performance of MLCC-1,it was optimized by 12BA5N+2G green sheets(prepared by 12BA5N ceramic powder with 2 wt%B-Al-Si glass additive),then MLCC-2 was obtained which satisfied EIA X8R specification.Its BDS rose from 20 to29.4 kV·mm^(-1),and the electric field distribution of dielectric layer was also analyzed by FEM.Besides,it was also found that the grain size and the dielectric constants of"core"and"shell"parts for the 12BA5N+2G dielectric layer both contributed to the enhanced BDS of MLCC-2according to the simulation results from FEM.
基金supported by the National Key R&D Program of China(No.2021YFB3800604 and No.2021YFA0716502)Shanghai Pilot Program for Basic Research-Chinese Academy of Science Shanghai Branch(JCYJ-SHFY-2022-002)+1 种基金the Instrument Developing Project of Chinese Academy of Sciences(No.ZDKYYQ20180004)the Shanghai Sailing Program(No.20YF1455600)and Hengdian Group Holding Co.LTD。
文摘Local electric-field around multitype pores(dielectric pore,interface pore,electrode pore)in multilayer ceramic capacitors(MLCCs)was investigated using Kelvin probe force microscopy combined with the finite element simulation to understand the effect of pores on the electric reliability of MLCCs.Electricfield is found to be concentrated significantly in the vicinity of these pores and the strength of the local electric-field is 1.5e5.0 times of the nominal strength.Unexpectedly,the concentration degree of the pores in the inner electrode is much higher than that in the dielectrics and dielectric-electrode interfaces.Meanwhile,geometry orientations are found to have a remarkable influence on the local electric field strength.The pores act as an insulation degradation precursor via local electric,thermal center,and oxygen vacancies accumulation center.Such unusual local electric field concentration of multitype pores can provide new insights into the understanding of insulation degradation evolution,processing tailoring and design optimization for MLCCs.