期刊文献+
共找到73篇文章
< 1 2 4 >
每页显示 20 50 100
Improving the spaceborne GNSS-R altimetric precision based on the novel multilayer feedforward neural network weighted joint prediction model
1
作者 Yiwen Zhang Wei Zheng Zongqiang Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期271-284,共14页
Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at... Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at the global scale required for underwater navigation.At present,there are still research gaps for GNSS-R altimetry under this mode,and its altimetric capability cannot be specifically assessed.Therefore,GNSS-R satellite constellations that meet the global altimetry needs to be designed.Meanwhile,the matching precision prediction model needs to be established to quantitatively predict the GNSS-R constellation altimetric capability.Firstly,the GNSS-R constellations altimetric precision under different configuration parameters is calculated,and the mechanism of the influence of orbital altitude,orbital inclination,number of satellites and simulation period on the precision is analyzed,and a new multilayer feedforward neural network weighted joint prediction model is established.Secondly,the fit of the prediction model is verified and the performance capability of the model is tested by calculating the R2 value of the model as 0.9972 and the root mean square error(RMSE)as 0.0022,which indicates that the prediction capability of the model is excellent.Finally,using the novel multilayer feedforward neural network weighted joint prediction model,and considering the research results and realistic costs,it is proposed that when the constellation is set to an orbital altitude of 500 km,orbital inclination of 75and the number of satellites is 6,the altimetry precision can reach 0.0732 m within one year simulation period,which can meet the requirements of underwater navigation precision,and thus can provide a reference basis for subsequent research on spaceborne GNSS-R sea surface altimetry. 展开更多
关键词 GNSS-R satellite constellations Sea surface altimetric precision Underwater navigation multilayer feedforward neural network
下载PDF
A Second Order Training Algorithm for Multilayer Feedforward Neural Networks
2
作者 谭营 何振亚 邓超 《Journal of Southeast University(English Edition)》 EI CAS 1997年第1期32-36,共5页
ASecondOrderTrainingAlgorithmforMultilayerFeedforwardNeuralNetworksTanYing(谭营)HeZhenya(何振亚)(DepartmentofRad... ASecondOrderTrainingAlgorithmforMultilayerFeedforwardNeuralNetworksTanYing(谭营)HeZhenya(何振亚)(DepartmentofRadioEngineering,Sou... 展开更多
关键词 multilayer feedforward NEURAL networks SECOND order TRAINING ALGORITHM BP ALGORITHM learning factors XOR problem
下载PDF
THE APPLICATION OF MULTILAYER FEEDFORWARD NETWORK FOR IMAGE SEGMENTATION
3
作者 吴小培 柴晓冬 张德龙 《Journal of Electronics(China)》 1995年第4期304-311,共8页
The multilayer feedforward network is used for image segmentation. This paper deals with the procedure of achieving the learning patterns and the method of improving the learning rate. The experiment shows that the im... The multilayer feedforward network is used for image segmentation. This paper deals with the procedure of achieving the learning patterns and the method of improving the learning rate. The experiment shows that the image segmentation can get better result from using the multilayer feedforward network. 展开更多
关键词 IMAGE processing multilayer feedforward network(MLFN) IMAGE SEGMENTATION BP algorithm
下载PDF
Generalization Capabilities of Feedforward Neural Networks for Pattern Recognition
4
作者 黄德双 《Journal of Beijing Institute of Technology》 EI CAS 1996年第2期192+184-192,共10页
This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that th... This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that the outputs of the output layer in the FNNs for classification correspond to the estimates of posteriori probability of the input pattern samples with desired outputs 1 or 0. The theorem for the generalized kernel function in the radial basis function networks (RBFN) is given. For an 2-layer perceptron network (2-LPN). an idea of using extended samples to improve generalization capability is proposed. Finally. the experimental results of radar target classification are given to verify the generaliztion capability of the RBFNs. 展开更多
关键词 feedforward neural networks radial basis function networks multilayer perceptronnetworks generalization capability radar target classification
下载PDF
混沌自适应非洲秃鹫优化算法训练多层感知器 被引量:1
5
作者 申晋祥 鲍美英 +1 位作者 张景安 周建慧 《计算机工程与设计》 北大核心 2024年第2期546-552,共7页
针对训练多层感知器(MLP)时,算法对初始值敏感、易陷入局部最优和收敛速度慢等问题,对新型启发式算法非洲秃鹫优化算法提出改进算法IAVOA。在初始化种群时引入Logistic混沌映射,增加种群的多样性;对最优秃鹫和次优秃鹫增加自适应权重系... 针对训练多层感知器(MLP)时,算法对初始值敏感、易陷入局部最优和收敛速度慢等问题,对新型启发式算法非洲秃鹫优化算法提出改进算法IAVOA。在初始化种群时引入Logistic混沌映射,增加种群的多样性;对最优秃鹫和次优秃鹫增加自适应权重系数,自动调整这两类秃鹫对普通秃鹫的引导作用;IAVOA用于MLP的训练,采用均方误差的平均值作为适应度函数寻找MLP的连接权重和偏差的最佳组合。选取4个不同复杂度的分类数据集,比较IAVOA算法与现有启发式算法对MLP训练后,MLP对数据分类的性能,仿真结果表明,IAVOA算法训练的MLP在数据分类准确率、全局搜索能力、收敛速度和稳定性方面均具有良好的性能。 展开更多
关键词 优化 分类 非洲秃鹫算法 多层感知器 前馈神经网络 自适应系数 收敛
下载PDF
Neural Network inverse Adaptive Controller Based on Davidon Least Square 被引量:2
6
作者 Chen, Zengqiang Lu, Zhao Yuan, Zhuzhi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期47-52,共6页
General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neu... General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neural network inverse adaptive controller is used. We employ Davidon least squares in training the multi-layer feedforward neural network used in approximating the inverse model of plant to expedite the convergence, and then through constructing the pseudo-plant, a neural network inverse adaptive controller is put forward which is still effective to the nonlinear non-minimum phase system. The simulation results show the validity of this scheme. 展开更多
关键词 ALGORITHMS Backpropagation Convergence of numerical methods feedforward neural networks Inverse problems Least squares approximations Mathematical models multilayer neural networks
下载PDF
一种基于GRU的半监督网络流量异常检测方法 被引量:15
7
作者 李海涛 王瑞敏 +1 位作者 董卫宇 蒋烈辉 《计算机科学》 CSCD 北大核心 2023年第3期380-390,共11页
入侵检测系统(IDS)是在出现网络攻击时能够发出警报的检测系统,检测网络中未知的攻击是IDS面临的挑战。深度学习技术在网络流量异常检测方面发挥着重要的作用,但现有的方法大多具有较高的误报率且模型的训练大多使用有监督学习的方式。... 入侵检测系统(IDS)是在出现网络攻击时能够发出警报的检测系统,检测网络中未知的攻击是IDS面临的挑战。深度学习技术在网络流量异常检测方面发挥着重要的作用,但现有的方法大多具有较高的误报率且模型的训练大多使用有监督学习的方式。为此,提出了一种基于门循环单元网络(GRU)的半监督网络流量异常检测方法(SEMI-GRU)。该方法将多层双向门循环单元神经网络(MLB-GRU)和改进的前馈神经网络(FNN)相结合,采用数据过采样技术和半监督学习训练方式,应用二分类和多分类方式检验网络流量异常检测的效果,并使用NSL-KDD,UNSW-NB15和CIC-Bell-DNS-EXF-2021数据集进行验证。与经典机器学习模型和DNN,ANN等深度学习模型相比,SEMI-GRU方法在准确率、精确率、召回率、误报率和F1分数等指标上的表现均表现更优。在NSL-KDD二分类和多分类任务中,SEMI-GRU在F1分数指标上领先于其他方法,分别为93.08%和82.15%;在UNSW-NB15二分类和多分类任务中,SEMI-GRU在F1分数上的表现优于对比方法,分别为88.13%和75.24%;在CIC-Bell-DNS-EXF-2021轻文件攻击数据集二分类任务中,SEMI-GRU对所有测试数据均分类正确。 展开更多
关键词 入侵检测系统 半监督学习 多层双向门循环单元 前馈神经网络 NSL-KDD UNSW-NB15
下载PDF
Application of a multilayer feedforward network to voiced-unvoiced-silence classifications of speech
8
作者 QI Yingyong(Department of Speech and Hearing Sciences, University of Arizona , Tucson . Arizona 85721) 《Chinese Journal of Acoustics》 1992年第2期167-178,共12页
A procedure has been developed for making voiced, unvoiced, and silence classifications of speech by using a multilayer feedforward net -work. Speech signals were analyzed sequentially and a feature vector was obtaine... A procedure has been developed for making voiced, unvoiced, and silence classifications of speech by using a multilayer feedforward net -work. Speech signals were analyzed sequentially and a feature vector was obtained for each segment . The feature vector served as input to a 3-layer feedforward network in which voiced, unvoiced, and silence classification was made. The network had a 6-12-3 node architecture and was trained using the generalized delta rule for back propagation of error . The performance of the network was evaluated using speech samples from 3 male and 3 female speakers . A speaker-dependent classification rate of 94.7% and speaker-independent classification rate of 94.3% were obtained. It is concluded that the voiced, unvoiced , and silence classification of speech can be effectively accomplished using a multilayer feedforward network. 展开更多
关键词 work IEEE net Application of a multilayer feedforward network to voiced-unvoiced-silence classifications of speech
原文传递
改进蝴蝶算法的神经网络天线建模 被引量:1
9
作者 南敬昌 黄菊 张慧妹 《电子测量与仪器学报》 CSCD 北大核心 2023年第12期166-175,共10页
为提高天线建模效率,改变传统建模方法速度慢、效率低的问题,提出了一种用改进的蝴蝶算法(BOA)优化多层前馈神经网络(back propagation neural network,BPNN)的天线建模方法。首先,以多层前馈神经网络为基础网络,建立蝴蝶算法优化的BP... 为提高天线建模效率,改变传统建模方法速度慢、效率低的问题,提出了一种用改进的蝴蝶算法(BOA)优化多层前馈神经网络(back propagation neural network,BPNN)的天线建模方法。首先,以多层前馈神经网络为基础网络,建立蝴蝶算法优化的BP神经网络,解决BP神经网络预测精度低的问题。其次,在蝴蝶算法中融入天牛须算法(BAS),用天牛须算法替代蝴蝶算法的局部寻优过程,减小蝴蝶算法的空间复杂度、解决蝴蝶算法易陷入局部最小值的问题,创建改进的BOA-BP神经网络对天线进行精准建模。设计实例表明,该网络的预测精度达到了99.60%,相比于传统的BPNN和未改进蝴蝶算法优化的BPNN,预测S11的误差分别减少了47%和40.9%。此外,改进的BOA算法的运行时间相对于粒子群算法和遗传算法也分别减小了80.86%和82.79%,大大降低了网络运行的时间成本。综上,改进的BOA优化后的BPNN的建模精度和速度均得到了提高,验证了改进的蝴蝶算法作为一种新型神经网络优化策略的可行性和有效性。 展开更多
关键词 多层前馈神经网络 双陷波蜂窝结构分形超宽带天线 蝴蝶算法 天牛须算法 权值优化
下载PDF
水库群优化调度函数的人工神经网络方法研究 被引量:45
10
作者 胡铁松 万永华 冯尚友 《水科学进展》 EI CAS CSCD 1995年第1期53-60,共8页
提出了研究水库群优化调度函数的人工神经网络方法,并探讨了神经网络的训练参数、训练方法和训练样本的改变对网络训练和应用效果的影响。实例研究表明,模型及其算法是可行的、有效的。
关键词 水库群 水库调度 神经网络 最佳化
下载PDF
多层前向网络研究进展及若干问题 被引量:47
11
作者 董聪 郦正能 +1 位作者 夏人伟 何庆芝 《力学进展》 EI CSCD 北大核心 1995年第2期186-196,共11页
本文概述了多层前向网络研究的发展历史,对其中有代表性的若干成就进行了较为系统的介绍和评论,分析了当前研究工作中存在的一些问题,提出了解决这些问题的几种可行方案。在对多层前向网络的有效逼近机理进行深入剖析的基础上,提出... 本文概述了多层前向网络研究的发展历史,对其中有代表性的若干成就进行了较为系统的介绍和评论,分析了当前研究工作中存在的一些问题,提出了解决这些问题的几种可行方案。在对多层前向网络的有效逼近机理进行深入剖析的基础上,提出了合理的有限规模多层前向网络应当遵循的若干构造原则。 展开更多
关键词 多层前向网络 学习算法 神经网络
下载PDF
多层神经网络BP算法的改进 被引量:13
12
作者 姚瑞波 孙国雄 汤崇熙 《东南大学学报(自然科学版)》 EI CAS CSCD 1996年第4期126-130,共5页
多层神经网络BP算法的改进姚瑞波孙国雄汤崇熙(东南大学机械工程系,南京210018)目前,前馈型多层神经网络模型已广泛应用于模式识别、语音识别、数据压缩等领域.BP算法作为其学习方式有效地解决了XOR、T-C匹配问题... 多层神经网络BP算法的改进姚瑞波孙国雄汤崇熙(东南大学机械工程系,南京210018)目前,前馈型多层神经网络模型已广泛应用于模式识别、语音识别、数据压缩等领域.BP算法作为其学习方式有效地解决了XOR、T-C匹配问题,但BP网络的学习过程是对一个高... 展开更多
关键词 多层神经网络 BP算法 神经网络 误差函数
下载PDF
多层前向神经网络的快速学习算法及其应用 被引量:27
13
作者 叶军 张新华 《控制与决策》 EI CSCD 北大核心 2002年第B11期817-819,共3页
针对目前多层前向神经网络学习算法存在的不足 ,提出一种多层前向神经网络的快速学习算法 ,它不仅符合生物神经网络的基本特征 ,而且算法简单 ,学习收敛速度快 ,具有线性、非线性逼近精度高等特性。以二杆机械手逆运动学建模作为应用实... 针对目前多层前向神经网络学习算法存在的不足 ,提出一种多层前向神经网络的快速学习算法 ,它不仅符合生物神经网络的基本特征 ,而且算法简单 ,学习收敛速度快 ,具有线性、非线性逼近精度高等特性。以二杆机械手逆运动学建模作为应用实例 ,仿真结果表明该方法是有效的 ,其算法与收敛速度更优于 BP网络。 展开更多
关键词 多层前向神经网络 快速学习算法 运动学建模 机器人 机械手
下载PDF
广义BP算法及网络容错性和泛化能力的研究 被引量:37
14
作者 董聪 刘西拉 《控制与决策》 EI CSCD 北大核心 1998年第2期120-124,共5页
给出广义BP算法及其网络学习的多种方式,常用的前向网络全并行权值修改方式是其中效率较低的一种,有许多更好的权值修改方式可以使用。网络的泛化能力依赖于网络的拓扑结构,对国际上为改进网络泛化能力而采用的几种修正学习算法的... 给出广义BP算法及其网络学习的多种方式,常用的前向网络全并行权值修改方式是其中效率较低的一种,有许多更好的权值修改方式可以使用。网络的泛化能力依赖于网络的拓扑结构,对国际上为改进网络泛化能力而采用的几种修正学习算法的实际功能做了简要的评论。 展开更多
关键词 广义BP算法 泛化能力 神经网络 网络容错性
下载PDF
神经网络的新型二阶学习算法及其应用 被引量:4
15
作者 刘铁男 段玉波 +2 位作者 于镝 刘志德 张长江 《控制与决策》 EI CSCD 北大核心 2001年第5期627-629,共3页
针对 BP算法和 Karayiannis的二阶学习算法存在的不足 ,提出多层前向网络的新型二阶学习算法。该算法具有二阶收敛速度 ,其计算量与通常的递推最小二乘法相当。
关键词 二阶学习算法 Newton算法 神经网络 目标函数
下载PDF
多层前向神经网络的新型二阶学习算法 被引量:6
16
作者 刘铁男 段玉波 +3 位作者 陈广义 任伟建 徐宝昌 于镝 《控制理论与应用》 EI CAS CSCD 北大核心 2000年第5期721-724,共4页
提出了多层前向神经网络的新型二阶递推学习算法 .该算法不仅能使网络各层误差而且使二阶导数信息因子反向传播 .证明了新算法等价于Newton迭代法并且有二阶收敛速度 .它实现了Newton搜索方向和Hessian阵逆的递推运算 ,其计算量几乎与... 提出了多层前向神经网络的新型二阶递推学习算法 .该算法不仅能使网络各层误差而且使二阶导数信息因子反向传播 .证明了新算法等价于Newton迭代法并且有二阶收敛速度 .它实现了Newton搜索方向和Hessian阵逆的递推运算 ,其计算量几乎与普通递推最小二乘法相当 .由算法性能分析证明新算法优于Karayiannis等人的二阶学习算法 . 展开更多
关键词 BP算法 二阶学习算法 多层前向神经网络
下载PDF
模糊规则提取的两种方法性能分析 被引量:10
17
作者 苗立靖 杨杰 黄欣 《模糊系统与数学》 CSCD 1999年第3期16-21,共6页
机器学习近年来得到越来越多的重视,模糊规则提取是其中的重要的一个方向。本文介绍了两种自动提取模糊规则的方法,分别是基于多层前向网络和基于遗传算法的模糊规则自动生成。并且。
关键词 机器学习 模糊规则 多层前向网络 规则生成
下载PDF
基于改进多层前馈神经网络的电能质量扰动分类 被引量:8
18
作者 黄南天 徐殿国 刘晓胜 《电子测量与仪器学报》 CSCD 2009年第10期62-66,共5页
电能质量扰动分类是电能质量控制的重要工作之一,主要工作包括信号特征提取和分类器构造两个阶段。采用S变换与改进的多层前馈神经网络相结合,提出一种新的电能质量扰动分类方法。首先利用S变换对原始数据进行处理,提取具有代表性的4类... 电能质量扰动分类是电能质量控制的重要工作之一,主要工作包括信号特征提取和分类器构造两个阶段。采用S变换与改进的多层前馈神经网络相结合,提出一种新的电能质量扰动分类方法。首先利用S变换对原始数据进行处理,提取具有代表性的4类典型特征以表征不同种类的扰动类型的特性,之后使用拟牛顿法和自适应因子改进传统的多层前馈神经网络,将特征作为改进的多层前馈神经网络的输入向量,实现自动的分类识别。实验表明,新方法减少了噪声对分类准确率的影响,学习能力强,能够有效的识别电压暂降、电压瞬升、电压中断、暂态震荡、谐波等5种电能扰动。 展开更多
关键词 电能质量 电能质量扰动 多层前馈神经网络 S变换
下载PDF
统一电能质量控制器的建模与仿真 被引量:3
19
作者 任永峰 李含善 +1 位作者 李建林 许洪华 《电力系统及其自动化学报》 CSCD 北大核心 2009年第4期30-35,共6页
统一电能质量控制器可同时补偿电网畸变电压和抑制负载谐波电流。为此,构造了一种基于反向传播算法的三层前馈神经网络用来检测并联型有源电力滤波器的谐波电流,离线训练收敛后实现在线功能,对串联型有源电力滤波器谐波电压检测采用了... 统一电能质量控制器可同时补偿电网畸变电压和抑制负载谐波电流。为此,构造了一种基于反向传播算法的三层前馈神经网络用来检测并联型有源电力滤波器的谐波电流,离线训练收敛后实现在线功能,对串联型有源电力滤波器谐波电压检测采用了畸变电压参考量比较检测方法;建立了统一电能质量控制器的系统仿真模型,利用其对各种电能质量问题的补偿性能进行了仿真研究,并对补偿前后负载和电源电流/电压进行了频谱分析。研究结果表明,统一电能质量控制器集电压补偿、电流补偿于一体,可有效实现多重电能质量调节功能。 展开更多
关键词 统一电能质量控制器 多层前馈神经网络 建模 仿真 电能质量
下载PDF
多层前向网络的逼近与泛化机制 被引量:32
20
作者 董聪 《控制与决策》 EI CSCD 北大核心 1998年第A07期413-417,共5页
对多层前向网络的实际逼近过程进行了系统的分析,对前向网络泛化问题的数学和逻辑根源进行了阐述。研究表明,多层前向网络的实际逼近过程所基于的数学空间和Kolmogorov等人关于理想网络映射能力的数学证明所基于的数学空间... 对多层前向网络的实际逼近过程进行了系统的分析,对前向网络泛化问题的数学和逻辑根源进行了阐述。研究表明,多层前向网络的实际逼近过程所基于的数学空间和Kolmogorov等人关于理想网络映射能力的数学证明所基于的数学空间是不同的,它们是两类性质不同的逼近问题,具有完全不同的逼近机制。 展开更多
关键词 多层前向网络 逼近 泛化 归纳 感受
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部