期刊文献+
共找到62篇文章
< 1 2 4 >
每页显示 20 50 100
基于多维能力和知识图谱-多层感知机的变压器运行状态画像构建方法 被引量:1
1
作者 舒胜文 陈阳阳 +3 位作者 张梓奇 方舒绮 王国彬 曾静岚 《电网技术》 EI CSCD 北大核心 2024年第2期750-759,共10页
利用大数据和画像技术对电力变压器运行状态进行准确评价有利于保障电力系统的安全稳定运行。针对电力变压器运行状态传统评价方法存在的评价维度过于单一、主观性较强等不足,提出了一种基于多维能力和知识图谱-多层感知机的变压器运行... 利用大数据和画像技术对电力变压器运行状态进行准确评价有利于保障电力系统的安全稳定运行。针对电力变压器运行状态传统评价方法存在的评价维度过于单一、主观性较强等不足,提出了一种基于多维能力和知识图谱-多层感知机的变压器运行状态画像构建方法。首先,构建了由绝缘水平、负载能力、抗短路能力、能效等级和调压能力五个能力构成的变压器运行状态画像体系;然后,融合知识图谱(knowledge graph,KG)与多层感知机(multilayer perceptron,MLP),建立了一种变压器运行状态画像分析模型;最后,基于某地区1368台110kV变压器的实际运行数据,开展了变压器运行状态画像的实例分析,并与随机森林(random forest,RF)和支持向量机(support vector machine,SVM)方法的画像分析结果进行对比。研究结果表明,所提方法对变压器运行状态画像的准确率达到96.35%,优于RF算法(准确率89%)和SVM算法(准确率77%),为电力变压器的运行状态评价提供了一种新思路。 展开更多
关键词 电力变压器 运行状态 画像构建 多维能力 知识图谱 多层感知机
下载PDF
非语言信息增强和对比学习的多模态情感分析模型
2
作者 刘佳 宋泓 +2 位作者 陈大鹏 王斌 张增伟 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第8期3372-3381,共10页
因具有突出的表征和融合能力,深度学习方法近年来越来越多地被应用于多模态情感分析领域。已有的研究大多利用文字、面部表情、语音语调等多模态信息对人物的情绪进行分析,并主要使用复杂的融合方法。然而,现有模型在长时间序列中未充... 因具有突出的表征和融合能力,深度学习方法近年来越来越多地被应用于多模态情感分析领域。已有的研究大多利用文字、面部表情、语音语调等多模态信息对人物的情绪进行分析,并主要使用复杂的融合方法。然而,现有模型在长时间序列中未充分考虑情感的动态变化,导致情感分析性能不佳。针对这一问题,该文提出非语言信息增强和对比学习的多模态情感分析网络模型。首先,使用长程文本信息去促使模型学习音频和视频在长时间序列中的动态变化,然后,通过门控机制消除模态间的冗余信息和语义歧义。最后,使用对比学习加强模态间的交互,提升模型的泛化性。实验结果表明,在数据集CMU-MOSI上,该模型将皮尔逊相关系数(Corr)和F1值分别提高了3.7%和2.1%;而在数据集CMU-MOSEI上,该模型将“Corr”和“F1值”分别提高了1.4%和1.1%。因此,该文提出的模型可以有效利用模态间的交互信息,并去除信息冗余。 展开更多
关键词 多模态情感分析 多模态融合 信息增强 多层感知器
下载PDF
三种机器学习模型用于空气质量等级预测的比较研究——以保定市为例
3
作者 刘婕 郝舒欣 +2 位作者 万红燕 刘悦 徐东群 《环境卫生学杂志》 2024年第3期264-269,272,共7页
目的 利用支持向量机(support vector machine, SVM)、随机森林(random forest, RF)和多层感知器(multilayer perceptron, MLP)三种机器学习方法分别构建保定市未来三日空气质量等级预测模型,通过对参数调优和预测结果比较选择三种模型... 目的 利用支持向量机(support vector machine, SVM)、随机森林(random forest, RF)和多层感知器(multilayer perceptron, MLP)三种机器学习方法分别构建保定市未来三日空气质量等级预测模型,通过对参数调优和预测结果比较选择三种模型中的最佳模型。方法 基于保定市2014—2022年的空气污染物日均浓度监测数据和同期气象数据,采用SVM、RF和MLP三种机器学习模型,利用前四日数据为未来三日分别构建了每日的空气质量等级预测模型并评估特征变量的重要性。对模型参数进行调优,采取十折交叉验证法进行验证,通过准确率和AUC等指标来评估模型性能。结果 SVM模型未来三日准确率分别为69.8%、63.5%、62.3%,AUC分别为77.4、70.8、70.7;RF模型未来三日准确率分别为75.9%、68.2%、67.1%,AUC分别为0.84、0.74、0.72;MLP模型未来三日准确率分别为73.2%、66.4%、65.7%,AUC为0.83、0.74、0.73,综合对比RF模型表现最优;空气质量特征变量重要性高于气象因素特征变量。结论 通过对比研究,RF机器学习模型能够相对有效地预测未来一日空气污染等级,并提供空气质量等级预警。 展开更多
关键词 机器学习 空气污染 支持向量机 随机森林 多层感知器
下载PDF
基于骨架特征的人体跌倒检测
4
作者 汤发源 赵永兴 +2 位作者 刘晓亮 赵欣 王京华 《传感器与微系统》 CSCD 北大核心 2024年第3期115-119,124,共6页
针对现有基于人体骨架跌倒检测设备要求高的问题,提出了一种基于轻量级OpenPose生成骨架特征的跌倒检测方法。首先,基于轻量级OpenPose网络检测人体关键点,利用人体部分关键点生成边界框,并对关键点坐标进行标准化处理,将边界框的纵横... 针对现有基于人体骨架跌倒检测设备要求高的问题,提出了一种基于轻量级OpenPose生成骨架特征的跌倒检测方法。首先,基于轻量级OpenPose网络检测人体关键点,利用人体部分关键点生成边界框,并对关键点坐标进行标准化处理,将边界框的纵横比和标准化后的关键点坐标作为表示人体姿态的特征向量。最后,将人体姿态特征向量作为多层感知机(MLP)的输入,判断人体是否发生跌倒。实验结果表明,基于单目相机采集图片构造的自定义跌倒数据集,网络可以实现98.64%的跌倒检测准确率,并且在CoreTMi5—9300H CPU上达到20fps的检测速度。 展开更多
关键词 关键点 边界框 特征向量 多层感知机 跌倒检测
下载PDF
基于U形多层感知机网络的地震波初至拾取与反演
5
作者 孙明皓 余瀚 +1 位作者 陈雨青 陆恺 《计算机应用》 CSCD 北大核心 2024年第7期2301-2309,共9页
针对传统勘探地震波初至拾取工作量大、抗噪性差和精度低所导致的低质量速度反演影响生产安全的问题,提出一种基于U形多层感知机(U-MLP)网络的地震波初至拾取与反演方法。首先,为解决传统U形网络(U-Net)中的交叉熵损失函数在数据类别不... 针对传统勘探地震波初至拾取工作量大、抗噪性差和精度低所导致的低质量速度反演影响生产安全的问题,提出一种基于U形多层感知机(U-MLP)网络的地震波初至拾取与反演方法。首先,为解决传统U形网络(U-Net)中的交叉熵损失函数在数据类别不平衡时导致的性能变差问题,设计一种基于加权交叉熵Lovász归一化指数(WLS)的损失函数;然后,在特征融合阶段引入残差连接,缩小低级特征与高级特征间的差距,还原更多细节信息;最后,为使U-MLP网络更好学习图像局部特征,为高级语义引入标记化的多层感知机(MLP)模块,此模块降低了参数量和计算复杂度。实验结果表明,与U-Net相比,U-MLP网络在训练中收敛性更强,初至拾取最大误差降低了20%以上,交并比(IoU)值提升了约2%。可见,U-MLP网络在提取勘探地震波初至时不仅提高了拾取精度,而且拾取的初至在仿真数据和实际数据中的速度分布反演均达到了理想效果,具有更好的性能且适应性更强。 展开更多
关键词 U形网络 多层感知机 初至拾取 反演 成像
下载PDF
随机样本遗传MLP模型算法 被引量:1
6
作者 尤志宁 浦云明 《计算机工程与应用》 CSCD 北大核心 2015年第21期121-127,143,共8页
提出的SSGAMLP(Small Set Genetic Algorithm Multilayer Perceptron)模型,是针对MLP模型易陷入局部最优,且模型泛化性不好,而遗传算法可以跳出局部最优,但是种群个体数较多,却带来运算复杂度的提高,目的是为了克服以上不足,将遗传算法... 提出的SSGAMLP(Small Set Genetic Algorithm Multilayer Perceptron)模型,是针对MLP模型易陷入局部最优,且模型泛化性不好,而遗传算法可以跳出局部最优,但是种群个体数较多,却带来运算复杂度的提高,目的是为了克服以上不足,将遗传算法与MLP模型相结合,将MLP模型节点的向下连接权值看成是低层向高层的映射,因此每个节点(包括权值和阈值)可以看成是一个特征表达,即遗传算法的基因表达,同时个体MLP模型训练使用的随机样本子集以及算法的交叉变异,相当于引入随机因子,存在获得未知特征表达的可能性。实验基于MNIST数据集,印证了SSGAMLP模型在性能上的优势。模型降低了个体运算复杂度,提高了泛化性,在一定程度上克服了过拟合性。 展开更多
关键词 多层感知机 遗传算法 随机子集 泛化性
下载PDF
基于IMU传感器与深度度量学习的人体行为识别算法
7
作者 时尚 何正燃 董恒 《移动通信》 2024年第3期131-136,共6页
人体行为识别可以定义为通过一系列观察和周围环境来确定一个人的各种姿势和日常活动。很多研究尝试将深度学习技术用于HAR中,然而,现有的基于DL的HAR方法存在复杂度较高、算力需求大和泛化性与鲁棒性不足的问题。为了解决上述问题,围... 人体行为识别可以定义为通过一系列观察和周围环境来确定一个人的各种姿势和日常活动。很多研究尝试将深度学习技术用于HAR中,然而,现有的基于DL的HAR方法存在复杂度较高、算力需求大和泛化性与鲁棒性不足的问题。为了解决上述问题,围绕基于智能手机内置IMU传感器的HAR方法,提出了一种名为RMDML的HAR方法,该方法结合了轻量化神经网络Res-MLP和深度度量学习的特征嵌入技术,旨在提取具有可分离性与可判别性的泛化特征,从而提高模型识别性能和泛化性能。RMDML模型在公开数据集UCI HAR上取得了97.26%的准确率,高于几种常见的HAR算法,证明了所提出方法的有效性。 展开更多
关键词 人体行为识别 惯性测量单元传感器 残差多层感知机 度量学习
下载PDF
一种基于MLP神经网络的大额损失飞行事故预测模型 被引量:4
8
作者 于洪霞 李兴 《上海电力学院学报》 CAS 2016年第5期504-506,共3页
运用多层感知器(MLP)神经网络方法构建了大额损失飞行事故的预测模型,并利用CASE数据库中抽取的飞行事故案例进行了检验.预测效果检验表明,所构建的模型具有较好的拟合程度和预测效果.机身价值和机龄是大额损失飞行事故的重要影响因素.
关键词 大额损失飞行事故 分类变量 多层感知器 神经网络方法
下载PDF
Improved reservoir characterization by means of supervised machine learning and model-based seismic impedance inversion in the Penobscot field,Scotian Basin
9
作者 Satya Narayan Soumyashree Debasis Sahoo +2 位作者 Soumitra Kar Sanjit Kumar Pal Subhra Kangsabanik 《Energy Geoscience》 EI 2024年第2期183-201,共19页
The present research work attempted to delineate and characterize the reservoir facies from the Dawson Canyon Formation in the Penobscot field,Scotian Basin.An integrated study of instantaneous frequency,P-impedance,v... The present research work attempted to delineate and characterize the reservoir facies from the Dawson Canyon Formation in the Penobscot field,Scotian Basin.An integrated study of instantaneous frequency,P-impedance,volume of clay and neutron-porosity attributes,and structural framework was done to unravel the Late Cretaceous depositional system and reservoir facies distribution patterns within the study area.Fault strikes were found in the EW and NEE-SWW directions indicating the dominant course of tectonic activities during the Late Cretaceous period in the region.P-impedance was estimated using model-based seismic inversion.Petrophysical properties such as the neutron porosity(NPHI)and volume of clay(VCL)were estimated using the multilayer perceptron neural network with high accuracy.Comparatively,a combination of low instantaneous frequency(15-30 Hz),moderate to high impedance(7000-9500 gm/cc*m/s),low neutron porosity(27%-40%)and low volume of clay(40%-60%),suggests fair-to-good sandstone development in the Dawson Canyon Formation.After calibration with the welllog data,it is found that further lowering in these attribute responses signifies the clean sandstone facies possibly containing hydrocarbons.The present study suggests that the shale lithofacies dominates the Late Cretaceous deposition(Dawson Canyon Formation)in the Penobscot field,Scotian Basin.Major faults and overlying shale facies provide structural and stratigraphic seals and act as a suitable hydrocarbon entrapment mechanism in the Dawson Canyon Formation's reservoirs.The present research advocates the integrated analysis of multi-attributes estimated using different methods to minimize the risk involved in hydrocarbon exploration. 展开更多
关键词 Reservoir characterization Model-based inversion multilayer perceptron(mlp) IMPEDANCE Petrophysical properties Scotian Basin
下载PDF
基于深度学习的图书资源借阅推荐算法研究
10
作者 王德才 蒋业政 冯雪萍 《信息与电脑》 2024年第4期132-134,共3页
图书馆借阅系统的升级与创新是提升图书馆服务质量和读者体验的关键,也是智慧图书馆建设的重要工作。本研究通过采集图书馆的借阅信息、读者信息和图书信息等数据,采用基于Transformer的双向编码(Bidirectional Encoder Representations... 图书馆借阅系统的升级与创新是提升图书馆服务质量和读者体验的关键,也是智慧图书馆建设的重要工作。本研究通过采集图书馆的借阅信息、读者信息和图书信息等数据,采用基于Transformer的双向编码(Bidirectional Encoder Representations from Transformers,BERT)模型提取图书特征,应用多层感知机(Multilayer Perceptron,MLP)深度学习方法,对读者的历史借阅记录信息进行全面的数据挖掘,分析读者的借阅偏好。结果表明,BERT-MLP模型的性能明显优于基础神经网络模型,且可以更有效地找到图书推荐数据的重要特征。本研究可为提高图书馆个性化服务水平提供理论依据。 展开更多
关键词 深度学习 多层感知机(mlp) 基于Transformer的双向编码(BERT) 推荐算法
下载PDF
基于混合模型CHMM和MLP的数码语音识别系统
11
作者 张培玲 李辉 《工矿自动化》 2009年第12期64-68,共5页
针对传统的CHMM应用于语音识别系统存在的缺点,提出了一种由CHMM和MLP网构成的混合模型。该混合模型将MLP网引入到CHMM中来计算每个状态的输出概率,通过MLP网的非线性预测能力代替CHMM中的似然估计值对输出概率进行分析、分类,从而加强... 针对传统的CHMM应用于语音识别系统存在的缺点,提出了一种由CHMM和MLP网构成的混合模型。该混合模型将MLP网引入到CHMM中来计算每个状态的输出概率,通过MLP网的非线性预测能力代替CHMM中的似然估计值对输出概率进行分析、分类,从而加强和提高CHMM的语音识别能力。实验结果表明,将该混合模型应用到语音识别系统中,其识别效果明显优于基于传统的CHMM的识别系统。 展开更多
关键词 数码语音识别 连续隐马尔可夫模型 多层感知器 CHMM mlp
下载PDF
基于MLP传感器的非线性校正 被引量:1
12
作者 李如发 卢文科 《湖北大学学报(自然科学版)》 CAS 2014年第2期181-184,共4页
电涡流传感器在测量工作时,容易受环境温度等非目标参量的影响,使得测量精度大大降低.采用多层感知器网络算法进行数据融合消除温度对测量精度影响,研究结果证明该方法的有效性和可行性.
关键词 数据融合 多层感知器 归一化 非线形校正
下载PDF
基于MLP神经网络模型的客户评分应用研究 被引量:4
13
作者 王冰 韩俊宇 《计算机与现代化》 2017年第3期27-31,共5页
判断客户对产品购买的可能性,是企业营销人员重点关注的问题。针对保险产品客户与其他金融客户交叉销售,采用人工智能方法高精度量化客户的潜在购买力。根据对个人保险客户营销的总结,提出保险客户购买评分模型。通过使用中国邮政代理... 判断客户对产品购买的可能性,是企业营销人员重点关注的问题。针对保险产品客户与其他金融客户交叉销售,采用人工智能方法高精度量化客户的潜在购买力。根据对个人保险客户营销的总结,提出保险客户购买评分模型。通过使用中国邮政代理金融的简易保险客户数据,对模型的有效性进行实证研究。研究结果表明,该模型提供了较高效的预测准确率和具体的评价标准,具有良好的预测功能,可以帮助企业及时发现最有效的营销客户,最大程度上提高营销成功率。 展开更多
关键词 评分模型 多层感知器(mlp) 神经网络 数据挖掘
下载PDF
基于多特征融合的MLP压裂泵单向阀故障诊断研究 被引量:7
14
作者 潘灵永 《机电工程》 CAS 北大核心 2021年第10期1299-1304,1310,共7页
在页岩气开采过程中,压裂泵单向阀因易发生破损而更换频繁,目前单向阀的检测方法存在依赖人工经验、需要专人监测、故障定位准确性不高、全检全换等问题。针对上述问题,以中石化柴驱压裂泵为例,提出了一种基于多特征融合和多层感知器相... 在页岩气开采过程中,压裂泵单向阀因易发生破损而更换频繁,目前单向阀的检测方法存在依赖人工经验、需要专人监测、故障定位准确性不高、全检全换等问题。针对上述问题,以中石化柴驱压裂泵为例,提出了一种基于多特征融合和多层感知器相结合的方法,对其单向阀进行了故障诊断。首先,用多个加速度传感器和压力传感器,对不同单向阀故障情况下的压裂泵工作状态进行了故障采集,对获取的数据分别进行了时域和频域相关的统计特征计算;然后,使用主成分分析法对其主要特征成分进行了提取,构成了新的特征向量;最后,利用多层感知器处理非线性数据的优势,使用其进行了单向阀故障的分类识别,实现了对压裂泵单向阀故障的精确诊断。研究结果表明:基于多特征融合和多层感知器相结合的方法能够准确识别出单向阀多种故障类型,且受工况的影响程度低,平均诊断准确率达到99.6%;多传感器计算得到的特征经处理后,可使不同单向阀故障具有可分性。 展开更多
关键词 压裂泵 单向阀 故障诊断 特征融合 多层感知器
下载PDF
基于MLP的上海市主要树种单木胸径生长率模型 被引量:3
15
作者 肖舜祯 刘强 +2 位作者 徐志扬 刘龙龙 朱海伦 《江西农业大学学报》 CAS CSCD 北大核心 2022年第5期1169-1176,共8页
【目的】胸径生长率模型是研究林分生长变化、森林生长收获预估以及生物量和碳储量动态变化等的基础支撑,对于森林资源管理具有重要意义。探索利用多层感知机神经网络技术建立上海市单木胸径生长率模型,为上海市森林资源年度监测数据更... 【目的】胸径生长率模型是研究林分生长变化、森林生长收获预估以及生物量和碳储量动态变化等的基础支撑,对于森林资源管理具有重要意义。探索利用多层感知机神经网络技术建立上海市单木胸径生长率模型,为上海市森林资源年度监测数据更新提供技术支撑。【方法】利用第六次至第九次全国森林资源连续清查上海市1999、2004、2009、2014年4期固定样地调查数据,对复位样木按照两倍标准差法进行胸径生长异常值剔除,再按照树种和前期胸径分组进行数据合并,分组计算样木胸径生长量的算术平均值,然后按复利式计算出相应的生长率,进而分别建立水杉、樟树、女贞、木兰、杨树5个树种的传统非线性回归和人工神经网络多层感知机的单木胸径生长率模型。使用确定系数(R2)和估计值剩余标准差(SEE)进行模型评价,使用确定系数(R2)、估计值剩余标准差(SEE)、平均预估误差(MPE)和平均百分标准误差(MPSE)进行预估评价。【结果】5个树种单木胸径生长率建模时,非线性回归模型的确定系数(R2)达到0.854、0.790、0.691、0.641和0.608,多层感知机模型确定系数(R2)达到0.903、0.863、0.802、0.684和0.650,后者确定系数(R2)较非线性回归模型分别提高0.049、0.073、0.111、0.043和0.042,多层感知机模型的估计值剩余标准差(SEE)较非线性回归模型均有所下降,5个树种分别下降0.13、0.26、0.32、0.12和0.10;预估后期胸径时,非线性回归模型确定系数(R2)达到0.880、0.832、0.526、0.860和0.799,多层感知机模型确定系数(R2)达到0.883、0.839、0.561、0.862和0.803,后者确定系数(R~2)较非线性回归模型分别提高0.003、0.007、0.035、0.002和0.004,2种模型的平均预估误差MPE均在2%以内,平均百分标准误差(MPSE)均在20%以内,多层感知机模型的估计值剩余标准差(SEE)、平均预估误差(MPE)和平均百分标准误差(MPSE)较非线性回归模型均有所下降,5个树种估计值剩余标准差(SEE)分别下降0.02、0.05、0.07、0.01和0.04,平均预估误差(MPE)分别下降0.01、0.01、0.05、0.01和0.02,平均百分标准误差(MPSE)分别下降0.26、0.09、0.56、0.47和0.33。【结论】多层感知机可以避免模型选型和违背传统统计假设处理。与非线性回归模型相比,多层感知机胸径生长率模型的建模精度和预估精度略有提高,为上海市森林资源年度监测数据更新提供参考。 展开更多
关键词 单木模型 胸径生长率 非线性回归模型 多层感知机模型
下载PDF
基于MLP实现水轮机适应式PID调节策略 被引量:1
16
作者 郭创新 梁年生 +1 位作者 叶鲁卿 熊小亮 《华中理工大学学报》 CSCD 北大核心 1996年第10期40-42,共3页
提出一种基于MLP模型实现适应式PID控制的策略.该策略不需要被控对象的精确模型,以经典的PID为基础,用神经网络实现,在给定评价函数下进行自学习.把它应用于单机运行的水轮机组频率扰动和负荷扰动仿真试验中。
关键词 水轮机调节 适应式PID调节 mlp模型 评价函数
下载PDF
基于XGBoost-MLP集成方法的离港航班延误预测
17
作者 张铭梁 侯霞 《北京信息科技大学学报(自然科学版)》 2022年第3期41-45,共5页
为了更准确地描述航班延误情况,为旅客出行提供参考,使用极端梯度提升(extreme gradient boosting, XGBoost)算法与多层感知机(multilayer perceptron, MLP)集成的模型对离港航班延误状态进行预测,将传统的延误、不延误细分为延误、半... 为了更准确地描述航班延误情况,为旅客出行提供参考,使用极端梯度提升(extreme gradient boosting, XGBoost)算法与多层感知机(multilayer perceptron, MLP)集成的模型对离港航班延误状态进行预测,将传统的延误、不延误细分为延误、半延误和不延误3种情况。在对航班数据和天气数据进行合并、筛选、拆分的基础上,先基于XGBoost模型进行二分类预测,然后基于二分类结果使用MLP进行三分类预测。实验结果表明,该方法比仅使用XGBoost模型或者MLP模型预测效果更佳,并且可改善半延误区间误差高的问题。 展开更多
关键词 极端梯度提升(XGBoost) 多层感知机(mlp) 多分类 集成方法
下载PDF
基于MLP算法的Webshell检测方法
18
作者 陶传志 胡珂珂 +2 位作者 葛新同 舒慧敏 王丽丽 《信息与电脑》 2021年第24期53-56,共4页
Webshell是一种常用的网站后门攻击工具绝大多数黑客通过它攻击网络中的其他机器。因此,本文提出了基于MLP算法的Webshell检测方案。在结合文本层面的TF-IDF预处理方案和字节码层面的Opcode转化处理中,本文算法的综合性能较好。10折交... Webshell是一种常用的网站后门攻击工具绝大多数黑客通过它攻击网络中的其他机器。因此,本文提出了基于MLP算法的Webshell检测方案。在结合文本层面的TF-IDF预处理方案和字节码层面的Opcode转化处理中,本文算法的综合性能较好。10折交叉验证后本文算法的正确率、精确率、召回率和TF值这4个重要指标,均达到95%以上。 展开更多
关键词 Webshell检测 mlp 多层感知器 TF-IDF 朴素贝叶斯 Xgboost
下载PDF
基于灰色关联度和Shapley值的区间组合预测模型及其应用 被引量:4
19
作者 陈勤勤 陈华友 韩冰 《安徽大学学报(自然科学版)》 CAS 北大核心 2023年第4期16-24,共9页
在不确定环境下,区间数是复杂系统一种信息表达形式.论文在单项区间预测的基础上,提出单项预测方法与实际值序列之间的灰色关联度作为精度的度量准则,构建区间型组合预测模型.考虑模型求解的复杂性,从对策论的角度出发,把组合预测方法... 在不确定环境下,区间数是复杂系统一种信息表达形式.论文在单项区间预测的基础上,提出单项预测方法与实际值序列之间的灰色关联度作为精度的度量准则,构建区间型组合预测模型.考虑模型求解的复杂性,从对策论的角度出发,把组合预测方法视为一个合作对策,单项预测方法视为合作对策的局中人,灰色关联度作为度量合作对策的收益函数,按照合作对策中Shapley值法在各单项预测模型中进行分配,从而给出组合预测权系数确定的新思路.为了验证模型的有效性,利用西德克萨斯中质原油现货价格,针对论文提出的组合模型进行比较分析,计算结果验证了论文提出的模型的可行性与有效性. 展开更多
关键词 区间组合预测 灰色关联度 SHAPLEY值 mlp(multilayer perceptron)模型 Holt指数平滑模型 SVM(support vector machine)模型
下载PDF
基于压电微机械超声换能器的扫描式手势识别传感器 被引量:1
20
作者 张士钦 胡益民 +2 位作者 苗斌 王光华 李加东 《微纳电子技术》 CAS 北大核心 2023年第11期1808-1816,共9页
超声手势识别是实现非接触交互的重要方式之一。基于压电微机械超声换能器(PMUT)的手势识别传感器具有功耗低、体积小、不受环境光影响等优点,当前主要是基于PMUT阵列的方式实现,提出了一种基于单振元PMUT的扫描式手势识别传感器。该传... 超声手势识别是实现非接触交互的重要方式之一。基于压电微机械超声换能器(PMUT)的手势识别传感器具有功耗低、体积小、不受环境光影响等优点,当前主要是基于PMUT阵列的方式实现,提出了一种基于单振元PMUT的扫描式手势识别传感器。该传感器由PMUT及电磁驱动单元组成,设计并制备了1.6 mm×1.6 mm的单振元PMUT,振膜半径为500μm,谐振频率为108 kHz,完成了PMUT与电磁驱动单元集成,电磁驱动单元驱动PMUT实现手势扫描,利用多层感知机(MLP)模型完成了手势识别测试。实验结果表明:该扫描式手势识别传感器可实现检测距离为150~600 mm、角度为180°范围内的6种手势识别,平均识别准确率最高为85.66%。 展开更多
关键词 压电微机械超声换能器(PMUT) 手势识别传感器 电磁驱动 超声扫描 多层感知机(mlp)
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部