The healthcare data requires accurate disease detection analysis,real-timemonitoring,and advancements to ensure proper treatment for patients.Consequently,Machine Learning methods are widely utilized in Smart Healthca...The healthcare data requires accurate disease detection analysis,real-timemonitoring,and advancements to ensure proper treatment for patients.Consequently,Machine Learning methods are widely utilized in Smart Healthcare Systems(SHS)to extract valuable features fromheterogeneous and high-dimensional healthcare data for predicting various diseases and monitoring patient activities.These methods are employed across different domains that are susceptible to adversarial attacks,necessitating careful consideration.Hence,this paper proposes a crossover-based Multilayer Perceptron(CMLP)model.The collected samples are pre-processed and fed into the crossover-based multilayer perceptron neural network to detect adversarial attacks on themedical records of patients.Once an attack is detected,healthcare professionals are promptly alerted to prevent data leakage.The paper utilizes two datasets,namely the synthetic dataset and the University of Queensland Vital Signs(UQVS)dataset,from which numerous samples are collected.Experimental results are conducted to evaluate the performance of the proposed CMLP model,utilizing various performancemeasures such as Recall,Precision,Accuracy,and F1-score to predict patient activities.Comparing the proposed method with existing approaches,it achieves the highest accuracy,precision,recall,and F1-score.Specifically,the proposedmethod achieves a precision of 93%,an accuracy of 97%,an F1-score of 92%,and a recall of 92%.展开更多
This paper examines the relationship between fatal road traffic accidents and potential predictors using multilayer perceptron artificial neural network (MLANN) models. The initial analysis employed twelve potential p...This paper examines the relationship between fatal road traffic accidents and potential predictors using multilayer perceptron artificial neural network (MLANN) models. The initial analysis employed twelve potential predictors, including traffic volume, prevailing weather conditions, roadway characteristics and features, drivers’ age and gender, and number of lanes. Based on the output of the model and the variables’ importance factors, seven significant variables are identified and used for further analysis to improve the performance of models. The model is optimized by systematically changing the parameters, including the number of hidden layers and the activation function of both the hidden and output layers. The performances of the MLANN models are evaluated using the percentage of the achieved accuracy, R-squared, and Sum of Square Error (SSE) functions.展开更多
Learning of the feedforward multilayer perceptron (MLP) networks is to adapt all synaptic weights in such a way that the discrepancy between the actual output signals and the desired signals, averaged over all learnin...Learning of the feedforward multilayer perceptron (MLP) networks is to adapt all synaptic weights in such a way that the discrepancy between the actual output signals and the desired signals, averaged over all learning examples (training patterns), is as small as possible. The backpropagation, or variations thereof, is a standard method applied to adjust the synaptic weights in the network in order to minimize a given cost function. However as a steepest descent approach, BP algorithm is too slow for many applications. Since late 1980s lots of efforts have been reported in the literature aimed at improving the efficiency of the algorithm. Among them a recently proposed learning strategy based on linearization of the nonlinear activation functions and optimization of the multilayer perceptron layer by layer (OLL) seems promising. In this paper a modified learning procedure is presented which tries to find a weight change vector at each trial iteration in the OLL algorithm more efficiently. The proposed learning procedure can save expensive computation efforts and yield better convergence rate as compared to the original OLL learning algorithms especially for large scale networks. The improved OLL learning algorithm is applied to the time series prediction problems presented by the OLL authors, and demonstrates a faster learning capability.展开更多
The attributes of the ECG signal signifying the unique electrical properties of the heart offer the opportunity to expand the realm of biometrics, which pertains the identification of an individual based on physical c...The attributes of the ECG signal signifying the unique electrical properties of the heart offer the opportunity to expand the realm of biometrics, which pertains the identification of an individual based on physical characteristics. The temporal organization of the ECG signal offers a basis for composing a machine learning feature set. The four attributes of the feature set are derived through software automation enabled by Python. These four attributes are the temporal differential of the P wave maximum and T wave maximum relative to the R wave maximum and the Q wave minimum and S wave minimum relative to the R wave maximum. The multilayer perceptron neural network was applied and evaluated in terms of classification accuracy and time to develop the model. Superior performance was achieved with respect to a reduced feature set considering only the temporal differential of the P wave maximum and T wave maximum relative to the R wave maximum by comparison to all four attributes applied to the feature set and the temporal differential of the Q wave minimum and S wave minimum relative to the R wave maximum. With these preliminary findings and the advent of portable and wearable devices for the acquisition of the ECG signal, the temporal organization of the ECG signal offers robust potential for the field of biometrics.展开更多
The Multilayer Perceptron Neural Network (MLPNN) induction technique has been successfully applied to a variety of machine learning tasks, including the extraction and classification of image features. However, not mu...The Multilayer Perceptron Neural Network (MLPNN) induction technique has been successfully applied to a variety of machine learning tasks, including the extraction and classification of image features. However, not much has been done in the application of MLPNN on images obtained by remote sensing. In this article, two automatic classification systems used in image feature extraction and classification from remote sensing data are presented. The first is a combination of two models: a MLPNN induction technique, integrated under ENVI (Environment for Visualizing Images) platform for classification, and a pre-processing model including dark subtraction for the calibration of the image, the Principal Components Analysis (PCA) for band selections and Independent Components Analysis (ICA) as blind source separator for feature extraction of the Landsat image. The second classification system is a MLPNN induction technique based on the Keras platform. In this case, there was no need for pre-processing model. Experimental results show the two classification systems to outperform other typical feature extraction and classification methods in terms of accuracy for some lithological classes including Granite1 class with the highest class accuracies of 96.69% and 92.69% for the first and second classification system respectively. Meanwhile, the two classification systems perform almost equally with the overall accuracies of 53.01% and 49.98% for the first and second models respectively </span><span style="font-family:Verdana;">though the keras model has the advantage of not integrating the pre-processing</span><span style="font-family:Verdana;"> model, hence increasing its efficiency. The application of these two systems to the study area resulted in the generation of an updated geological mapping with six lithological classes detected including the Gneiss, the Micaschist, the Schist and three versions of Granites (Granite1, Granite2 and Granite3).展开更多
Pore pressure is essential data in drilling design,and its accurate prediction is necessary to ensure drilling safety and improve drilling efficiency.Traditional methods for predicting pore pressure are limited when f...Pore pressure is essential data in drilling design,and its accurate prediction is necessary to ensure drilling safety and improve drilling efficiency.Traditional methods for predicting pore pressure are limited when forming particular structures and lithology.In this paper,a machine learning algorithm and effective stress theorem are used to establish the transformation model between rock physical parameters and pore pressure.This study collects data from three wells.Well 1 had 881 data sets for model training,and Wells 2 and 3 had 538 and 464 data sets for model testing.In this paper,support vector machine(SVM),random forest(RF),extreme gradient boosting(XGB),and multilayer perceptron(MLP)are selected as the machine learning algorithms for pore pressure modeling.In addition,this paper uses the grey wolf optimization(GWO)algorithm,particle swarm optimization(PSO)algorithm,sparrow search algorithm(SSA),and bat algorithm(BA)to establish a hybrid machine learning optimization algorithm,and proposes an improved grey wolf optimization(IGWO)algorithm.The IGWO-MLP model obtained the minimum root mean square error(RMSE)by using the 5-fold cross-validation method for the training data.For the pore pressure data in Well 2 and Well 3,the coefficients of determination(R^(2))of SVM,RF,XGB,and MLP are 0.9930 and 0.9446,0.9943 and 0.9472,0.9945 and 0.9488,0.9949 and 0.9574.MLP achieves optimal performance on both training and test data,and the MLP model shows a high degree of generalization.It indicates that the IGWO-MLP is an excellent predictor of pore pressure and can be used to predict pore pressure.展开更多
The present research work attempted to delineate and characterize the reservoir facies from the Dawson Canyon Formation in the Penobscot field,Scotian Basin.An integrated study of instantaneous frequency,P-impedance,v...The present research work attempted to delineate and characterize the reservoir facies from the Dawson Canyon Formation in the Penobscot field,Scotian Basin.An integrated study of instantaneous frequency,P-impedance,volume of clay and neutron-porosity attributes,and structural framework was done to unravel the Late Cretaceous depositional system and reservoir facies distribution patterns within the study area.Fault strikes were found in the EW and NEE-SWW directions indicating the dominant course of tectonic activities during the Late Cretaceous period in the region.P-impedance was estimated using model-based seismic inversion.Petrophysical properties such as the neutron porosity(NPHI)and volume of clay(VCL)were estimated using the multilayer perceptron neural network with high accuracy.Comparatively,a combination of low instantaneous frequency(15-30 Hz),moderate to high impedance(7000-9500 gm/cc*m/s),low neutron porosity(27%-40%)and low volume of clay(40%-60%),suggests fair-to-good sandstone development in the Dawson Canyon Formation.After calibration with the welllog data,it is found that further lowering in these attribute responses signifies the clean sandstone facies possibly containing hydrocarbons.The present study suggests that the shale lithofacies dominates the Late Cretaceous deposition(Dawson Canyon Formation)in the Penobscot field,Scotian Basin.Major faults and overlying shale facies provide structural and stratigraphic seals and act as a suitable hydrocarbon entrapment mechanism in the Dawson Canyon Formation's reservoirs.The present research advocates the integrated analysis of multi-attributes estimated using different methods to minimize the risk involved in hydrocarbon exploration.展开更多
In the research published in the World Journal of Clinical Cases,Wang and Long conducted a quantitative analysis to delineate the risk factors for intensive care unit-acquired weakness(ICU-AW)utilizing advanced machin...In the research published in the World Journal of Clinical Cases,Wang and Long conducted a quantitative analysis to delineate the risk factors for intensive care unit-acquired weakness(ICU-AW)utilizing advanced machine learning methodologies.The study employed a multilayer perceptron neural network to accurately predict the incidence of ICU-AW,focusing on critical variables such as ICU stay duration and mechanical ventilation.This research marks a significant advancement in applying machine learning to clinical diagnostics,offering a new paradigm for predictive medicine in critical care.It underscores the importance of integrating artificial intelligence technologies in clinical practice to enhance patient management strategies and calls for interdisciplinary collaboration to drive innovation in healthcare.展开更多
This document presents a framework for recognizing people by palm vein distribution analysis using cross-correlation based signatures to obtain descriptors. Haar wavelets are useful in reducing the number of features ...This document presents a framework for recognizing people by palm vein distribution analysis using cross-correlation based signatures to obtain descriptors. Haar wavelets are useful in reducing the number of features while maintaining high recognition rates. This experiment achieved 97.5% of individuals classified correctly with two levels of Haar wavelets. This study used twelve-version of RGB and NIR (near infrared) wavelength images per individual. One hundred people were studied;therefore 4,800 instances compose the complete database. A Multilayer Perceptron (MLP) was trained to improve the recognition rate in a k-fold cross-validation test with k = 10. Classification results using MLP neural network were obtained using Weka (open source machine learning software).展开更多
In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. ...In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. By the learning ability of the NN and the closely approximate unknown function to any degree of desired accuracy,the input-output mapping relationship between coordinates and the measurement data of time of arrival (TOA) and time difference of arrival (TDOA) is established. A real-time learning algorithm based on the extended Kalman filter (EKF) is used to train the multilayer perceptron (MLP) network by treating the linkweights of a network as the states of the nonlinear dynamic system. Since the EKF-based learning algorithm approximately gives the minimum variance estimate of the linkweights,the convergence is improved in comparison with the backwards error propagation (BP) algorithm. Numerical results illustrate thatthe proposedalgorithmcanachieve enhanced accuracy,and the performance ofthe algorithmis betterthanthat of the BP-based NN algorithm and the least squares (LS) algorithm in the NLOS environments. Moreover,this location method does not depend on a particular distribution of the NLOS error and does not need line-of-sight ( LOS ) or NLOS identification.展开更多
Background:Improving financial time series forecasting is one of the most challenging and vital issues facing numerous financial analysts and decision makers.Given its direct impact on related decisions,various attemp...Background:Improving financial time series forecasting is one of the most challenging and vital issues facing numerous financial analysts and decision makers.Given its direct impact on related decisions,various attempts have been made to achieve more accurate and reliable forecasting results,of which the combining of individual models remains a widely applied approach.In general,individual models are combined under two main strategies:series and parallel.While it has been proven that these strategies can improve overall forecasting accuracy,the literature on time series forecasting remains vague on the choice of an appropriate strategy to generate a more accurate hybrid model.Methods:Therefore,this study’s key aim is to evaluate the performance of series and parallel strategies to determine a more accurate one.Results:Accordingly,the predictive capabilities of five hybrid models are constructed on the basis of series and parallel strategies compared with each other and with their base models to forecast stock price.To do so,autoregressive integrated moving average(ARIMA)and multilayer perceptrons(MLPs)are used to construct two series hybrid models,ARIMA-MLP and MLP-ARIMA,and three parallel hybrid models,simple average,linear regression,and genetic algorithm models.Conclusion:The empirical forecasting results for two benchmark datasets,that is,the closing of the Shenzhen Integrated Index(SZII)and that of Standard and Poor’s 500(S&P 500),indicate that although all hybrid models perform better than at least one of their individual components,the series combination strategy produces more accurate hybrid models for financial time series forecasting.展开更多
In this study, the author will investigate and utilize advanced machine learning models related to two different methodologies to determine the best and most effective way to predict individuals with heart failure and...In this study, the author will investigate and utilize advanced machine learning models related to two different methodologies to determine the best and most effective way to predict individuals with heart failure and cardiovascular diseases. The first methodology involves a list of classification machine learning algorithms, and the second methodology involves the use of a deep learning algorithm known as MLP or Multilayer Perceptrons. Globally, hospitals are dealing with cases related to cardiovascular diseases and heart failure as they are major causes of death, not only for overweight individuals but also for those who do not adopt a healthy diet and lifestyle. Often, heart failures and cardiovascular diseases can be caused by many factors, including cardiomyopathy, high blood pressure, coronary heart disease, and heart inflammation [1]. Other factors, such as irregular shocks or stress, can also contribute to heart failure or a heart attack. While these events cannot be predicted, continuous data from patients’ health can help doctors predict heart failure. Therefore, this data-driven research utilizes advanced machine learning and deep learning techniques to better analyze and manipulate the data, providing doctors with informative decision-making tools regarding a person’s likelihood of experiencing heart failure. In this paper, the author employed advanced data preprocessing and cleaning techniques. Additionally, the dataset underwent testing using two different methodologies to determine the most effective machine-learning technique for producing optimal predictions. The first methodology involved employing a list of supervised classification machine learning algorithms, including Naïve Bayes (NB), KNN, logistic regression, and the SVM algorithm. The second methodology utilized a deep learning (DL) algorithm known as Multilayer Perceptrons (MLPs). This algorithm provided the author with the flexibility to experiment with different layer sizes and activation functions, such as ReLU, logistic (sigmoid), and Tanh. Both methodologies produced optimal models with high-level accuracy rates. The first methodology involves a list of supervised machine learning algorithms, including KNN, SVM, Adaboost, Logistic Regression, Naive Bayes, and Decision Tree algorithms. They achieved accuracy rates of 86%, 89%, 89%, 81%, 79%, and 99%, respectively. The author clearly explained that Decision Tree algorithm is not suitable for the dataset at hand due to overfitting issues. Therefore, it was discarded as an optimal model to be used. However, the latter methodology (Neural Network) demonstrated the most stable and optimal accuracy, achieving over 87% accuracy while adapting well to real-life situations and requiring low computing power overall. A performance assessment and evaluation were carried out based on a confusion matrix report to demonstrate feasibility and performance. The author concluded that the performance of the model in real-life situations can advance not only the medical field of science but also mathematical concepts. Additionally, the advanced preprocessing approach behind the model can provide value to the Data Science community. The model can be further developed by employing various optimization techniques to handle even larger datasets related to heart failures. Furthermore, different neural network algorithms can be tested to explore alternative approaches and yield different results.展开更多
Machine learning(ML)has taken the world by a tornado with its prevalent applications in automating ordinary tasks and using turbulent insights throughout scientific research and design strolls.ML is a massive area wit...Machine learning(ML)has taken the world by a tornado with its prevalent applications in automating ordinary tasks and using turbulent insights throughout scientific research and design strolls.ML is a massive area within artificial intelligence(AI)that focuses on obtaining valuable information out of data,explaining why ML has often been related to stats and data science.An advanced meta-heuristic optimization algorithm is proposed in this work for the optimization problem of antenna architecture design.The algorithm is designed,depending on the hybrid between the Sine Cosine Algorithm(SCA)and the Grey Wolf Optimizer(GWO),to train neural networkbased Multilayer Perceptron(MLP).The proposed optimization algorithm is a practical,versatile,and trustworthy platform to recognize the design parameters in an optimal way for an endorsement double T-shaped monopole antenna.The proposed algorithm likewise shows a comparative and statistical analysis by different curves in addition to the ANOVA and T-Test.It offers the superiority and validation stability evaluation of the predicted results to verify the procedures’accuracy.展开更多
This research aimed to improve selection of pepper seeds for separating high-quality seeds from low-quality seeds. Past research has shown that seed vigor is significantly related to the seed color and size, thus seve...This research aimed to improve selection of pepper seeds for separating high-quality seeds from low-quality seeds. Past research has shown that seed vigor is significantly related to the seed color and size, thus several physical features were identified as candidate predictors of high seed quality. Image recognition software was used to automate recognition of seed feature quality using 400 kernels of pepper cultivar 101. In addition, binary logistic regression and a neural network were applied to determine models with high predictive value of seed germination. Single-kernel germination tests were conducted to validate the predictive value of the identified features. The best predictors of seed vigor were determined by the highest correlation observed between the physical features and the subsequent fresh weight of seedlings that germinated from the 400 seeds. Correlation analysis showed that fresh weight was significantly positively correlated with eight physical features: three color features (R, a*, brightness), width, length, projected area, and single-kernel density, and weight. In contrast, fresh weight significantly negatively correlated with the feature of hue. In analyses of two of the highest correlating single features,' germination percentage increased from 59.3 to 71.8% when a*〉3, and selection rate peaked at 57.8%. Germination percentage increased from 59.3 to 79.4%, and the selection rate reached 76.8%, when single-kernel weight 〉0.0064 g. The most effective model was based on a multilayer perceptron (MLP) neural network, consisting of 15 physical traits as variables, and a stability calculated as 99.4%. Germination percentage in a calibration set of seeds was 79.1% and the selection rate was 90.0%. These results indicated that the model was effective in predicting seed germination based on physical features and could be used as a guide for quality control in seed selection. Automated systems based on machine vision and model classifiers can contribute to reducing the costs and labor required in the selection of pepper seeds.展开更多
Metamaterial Antenna is a special class of antennas that uses metamaterial to enhance their performance.Antenna size affects the quality factor and the radiation loss of the antenna.Metamaterial antennas can overcome ...Metamaterial Antenna is a special class of antennas that uses metamaterial to enhance their performance.Antenna size affects the quality factor and the radiation loss of the antenna.Metamaterial antennas can overcome the limitation of bandwidth for small antennas.Machine learning(ML)model is recently applied to predict antenna parameters.ML can be used as an alternative approach to the trial-and-error process of finding proper parameters of the simulated antenna.The accuracy of the prediction depends mainly on the selected model.Ensemble models combine two or more base models to produce a better-enhanced model.In this paper,a weighted average ensemble model is proposed to predict the bandwidth of the Metamaterial Antenna.Two base models are used namely:Multilayer Perceptron(MLP)and Support Vector Machines(SVM).To calculate the weights for each model,an optimization algorithm is used to find the optimal weights of the ensemble.Dynamic Group-Based Cooperative Optimizer(DGCO)is employed to search for optimal weight for the base models.The proposed model is compared with three based models and the average ensemble model.The results show that the proposed model is better than other models and can predict antenna bandwidth efficiently.展开更多
Global warming is one of the most complicated challenges of our time causing considerable tension on our societies and on the environment.The impacts of global warming are felt unprecedentedly in a wide variety of way...Global warming is one of the most complicated challenges of our time causing considerable tension on our societies and on the environment.The impacts of global warming are felt unprecedentedly in a wide variety of ways from shifting weather patterns that threatens food production,to rising sea levels that deteriorates the risk of catastrophic flooding.Among all aspects related to global warming,there is a growing concern on water resource management.This field is targeted at preventing future water crisis threatening human beings.The very first stage in such management is to recognize the prospective climate parameters influencing the future water resource conditions.Numerous prediction models,methods and tools,in this case,have been developed and applied so far.In line with trend,the current study intends to compare three optimization algorithms on the platform of a multilayer perceptron(MLP)network to explore any meaningful connection between large-scale climate indices(LSCIs)and precipitation in the capital of Iran,a country which is located in an arid and semi-arid region and suffers from severe water scarcity caused by mismanagement over years and intensified by global warming.This situation has propelled a great deal of population to immigrate towards more developed cities within the country especially towards Tehran.Therefore,the current and future environmental conditions of this city especially its water supply conditions are of great importance.To tackle this complication an outlook for the future precipitation should be provided and appropriate forecasting trajectories compatible with this region's characteristics should be developed.To this end,the present study investigates three training methods namely backpropagation(BP),genetic algorithms(GAs),and particle swarm optimization(PSO)algorithms on a MLP platform.Two frameworks distinguished by their input compositions are denoted in this study:Concurrent Model Framework(CMF)and Integrated Model Framework(IMF).Through these two frameworks,13 cases are generated:12 cases within CMF,each of which contains all selected LSCIs in the same lead-times,and one case within IMF that is constituted from the combination of the most correlated LSCIs with Tehran precipitation in each lead-time.Following the evaluation of all model performances through related statistical tests,Taylor diagram is implemented to make comparison among the final selected models in all three optimization algorithms,the best of which is found to be MLP-PSO in IMF.展开更多
Soil salinization is one of the most predominant environmental hazards responsible for agricultural land degradation,especially in the arid and semi-arid regions.An accurate spatial prediction and modeling of soil sal...Soil salinization is one of the most predominant environmental hazards responsible for agricultural land degradation,especially in the arid and semi-arid regions.An accurate spatial prediction and modeling of soil salinity in agricultural land are so important for farmers and decision-makers to develop the appropriate mechanisms to prevent the loss of fertile soil and increase crop production.El Outaya plain is marked by soil salinity increases due to the excessive use of poor groundwater quality for irrigation.This study aims to compare the performance of simple kriging,cokriging(SCOK),multilayer perceptron neural networks(MLP-NN),and support vector machines(SVM)in the prediction of topsoil and subsoil salinity.The field covariates including geochemical properties of irrigation groundwater and physical properties of soil and environmental covariates including digital elevation model and remote sensing derivatives were used as input candidates to SCOK,MLP-NN,and SVM.The optimal input combination was determined using multiple linear stepwise regression(MLSR).The results revealed that the SCOK using field covariates including water electrical conductivity(ECw)and sand percentage(sand%),and environmental covariates including land surface temperature(LST),topographic wetness index(TWI),and elevation could significantly increase the accuracy of soil salinity spatial prediction.The comparison of the prediction accuracy of the different modeling techniques using the Taylor diagram indicated that MLP-NN using LST,TWI,and elevation as inputs were more accurate in predicting the topsoil salinity[ECs(TS)]with a mean absolute error(MAE)of 0.43,root mean square error(RMSE)of 0.6 and correlation coefficient of 0.946.MLP-NN using ECw and sand%as inputs were more accurate in predicting the subsoil salinity[ECs(SS)]with MAE of 0.38,RMSE of0.6,and R of 0.968.展开更多
Digital signal processing of electroencephalography(EEG)data is now widely utilized in various applications,including motor imagery classification,seizure detection and prediction,emotion classification,mental task cl...Digital signal processing of electroencephalography(EEG)data is now widely utilized in various applications,including motor imagery classification,seizure detection and prediction,emotion classification,mental task classification,drug impact identification and sleep state classification.With the increasing number of recorded EEG channels,it has become clear that effective channel selection algorithms are required for various applications.Guided Whale Optimization Method(Guided WOA),a suggested feature selection algorithm based on Stochastic Fractal Search(SFS)technique,evaluates the chosen subset of channels.This may be used to select the optimum EEG channels for use in Brain-Computer Interfaces(BCIs),the method for identifying essential and irrelevant characteristics in a dataset,and the complexity to be eliminated.This enables(SFS-Guided WOA)algorithm to choose the most appropriate EEG channels while assisting machine learning classification in its tasks and training the classifier with the dataset.The(SFSGuided WOA)algorithm is superior in performance metrics,and statistical tests such as ANOVA and Wilcoxon rank-sum are used to demonstrate this.展开更多
Passive detection of moving target is an important part of intelligent surveillance. Satellite has the potential to play a key role in many applications of space-air-ground integrated networks(SAGIN). In this paper, w...Passive detection of moving target is an important part of intelligent surveillance. Satellite has the potential to play a key role in many applications of space-air-ground integrated networks(SAGIN). In this paper, we propose a novel intelligent passive detection method for aerial target based on reservoir computing networks. Specifically, delayed feedback networks are utilized to refine the direct signals from the satellite in the reference channels. In addition, the satellite direct wave interference in the monitoring channels adopts adaptive interference suppression using the minimum mean square error filter. Furthermore, we employ decoupling echo state networks to predict the clutter interference in the monitoring channels and construct the detection statistics accordingly. Finally, a multilayer perceptron is adopted to detect the echo signal after interference suppression. Extensive simulations is conducted to evaluate the performance of our proposed method. Results show that the detection probability is almost 100% when the signal-to-interference ratio of echo signal is-36 dB, which demonstrates that our proposed method achieves efficient passive detection for aerial targets in typical SAGIN scenarios.展开更多
基金funded by King Saud University through Researchers Supporting Program Number (RSP2024R499).
文摘The healthcare data requires accurate disease detection analysis,real-timemonitoring,and advancements to ensure proper treatment for patients.Consequently,Machine Learning methods are widely utilized in Smart Healthcare Systems(SHS)to extract valuable features fromheterogeneous and high-dimensional healthcare data for predicting various diseases and monitoring patient activities.These methods are employed across different domains that are susceptible to adversarial attacks,necessitating careful consideration.Hence,this paper proposes a crossover-based Multilayer Perceptron(CMLP)model.The collected samples are pre-processed and fed into the crossover-based multilayer perceptron neural network to detect adversarial attacks on themedical records of patients.Once an attack is detected,healthcare professionals are promptly alerted to prevent data leakage.The paper utilizes two datasets,namely the synthetic dataset and the University of Queensland Vital Signs(UQVS)dataset,from which numerous samples are collected.Experimental results are conducted to evaluate the performance of the proposed CMLP model,utilizing various performancemeasures such as Recall,Precision,Accuracy,and F1-score to predict patient activities.Comparing the proposed method with existing approaches,it achieves the highest accuracy,precision,recall,and F1-score.Specifically,the proposedmethod achieves a precision of 93%,an accuracy of 97%,an F1-score of 92%,and a recall of 92%.
文摘This paper examines the relationship between fatal road traffic accidents and potential predictors using multilayer perceptron artificial neural network (MLANN) models. The initial analysis employed twelve potential predictors, including traffic volume, prevailing weather conditions, roadway characteristics and features, drivers’ age and gender, and number of lanes. Based on the output of the model and the variables’ importance factors, seven significant variables are identified and used for further analysis to improve the performance of models. The model is optimized by systematically changing the parameters, including the number of hidden layers and the activation function of both the hidden and output layers. The performances of the MLANN models are evaluated using the percentage of the achieved accuracy, R-squared, and Sum of Square Error (SSE) functions.
基金supported by the National Natural Sciences Foundation of China.
文摘Learning of the feedforward multilayer perceptron (MLP) networks is to adapt all synaptic weights in such a way that the discrepancy between the actual output signals and the desired signals, averaged over all learning examples (training patterns), is as small as possible. The backpropagation, or variations thereof, is a standard method applied to adjust the synaptic weights in the network in order to minimize a given cost function. However as a steepest descent approach, BP algorithm is too slow for many applications. Since late 1980s lots of efforts have been reported in the literature aimed at improving the efficiency of the algorithm. Among them a recently proposed learning strategy based on linearization of the nonlinear activation functions and optimization of the multilayer perceptron layer by layer (OLL) seems promising. In this paper a modified learning procedure is presented which tries to find a weight change vector at each trial iteration in the OLL algorithm more efficiently. The proposed learning procedure can save expensive computation efforts and yield better convergence rate as compared to the original OLL learning algorithms especially for large scale networks. The improved OLL learning algorithm is applied to the time series prediction problems presented by the OLL authors, and demonstrates a faster learning capability.
文摘The attributes of the ECG signal signifying the unique electrical properties of the heart offer the opportunity to expand the realm of biometrics, which pertains the identification of an individual based on physical characteristics. The temporal organization of the ECG signal offers a basis for composing a machine learning feature set. The four attributes of the feature set are derived through software automation enabled by Python. These four attributes are the temporal differential of the P wave maximum and T wave maximum relative to the R wave maximum and the Q wave minimum and S wave minimum relative to the R wave maximum. The multilayer perceptron neural network was applied and evaluated in terms of classification accuracy and time to develop the model. Superior performance was achieved with respect to a reduced feature set considering only the temporal differential of the P wave maximum and T wave maximum relative to the R wave maximum by comparison to all four attributes applied to the feature set and the temporal differential of the Q wave minimum and S wave minimum relative to the R wave maximum. With these preliminary findings and the advent of portable and wearable devices for the acquisition of the ECG signal, the temporal organization of the ECG signal offers robust potential for the field of biometrics.
文摘The Multilayer Perceptron Neural Network (MLPNN) induction technique has been successfully applied to a variety of machine learning tasks, including the extraction and classification of image features. However, not much has been done in the application of MLPNN on images obtained by remote sensing. In this article, two automatic classification systems used in image feature extraction and classification from remote sensing data are presented. The first is a combination of two models: a MLPNN induction technique, integrated under ENVI (Environment for Visualizing Images) platform for classification, and a pre-processing model including dark subtraction for the calibration of the image, the Principal Components Analysis (PCA) for band selections and Independent Components Analysis (ICA) as blind source separator for feature extraction of the Landsat image. The second classification system is a MLPNN induction technique based on the Keras platform. In this case, there was no need for pre-processing model. Experimental results show the two classification systems to outperform other typical feature extraction and classification methods in terms of accuracy for some lithological classes including Granite1 class with the highest class accuracies of 96.69% and 92.69% for the first and second classification system respectively. Meanwhile, the two classification systems perform almost equally with the overall accuracies of 53.01% and 49.98% for the first and second models respectively </span><span style="font-family:Verdana;">though the keras model has the advantage of not integrating the pre-processing</span><span style="font-family:Verdana;"> model, hence increasing its efficiency. The application of these two systems to the study area resulted in the generation of an updated geological mapping with six lithological classes detected including the Gneiss, the Micaschist, the Schist and three versions of Granites (Granite1, Granite2 and Granite3).
文摘Pore pressure is essential data in drilling design,and its accurate prediction is necessary to ensure drilling safety and improve drilling efficiency.Traditional methods for predicting pore pressure are limited when forming particular structures and lithology.In this paper,a machine learning algorithm and effective stress theorem are used to establish the transformation model between rock physical parameters and pore pressure.This study collects data from three wells.Well 1 had 881 data sets for model training,and Wells 2 and 3 had 538 and 464 data sets for model testing.In this paper,support vector machine(SVM),random forest(RF),extreme gradient boosting(XGB),and multilayer perceptron(MLP)are selected as the machine learning algorithms for pore pressure modeling.In addition,this paper uses the grey wolf optimization(GWO)algorithm,particle swarm optimization(PSO)algorithm,sparrow search algorithm(SSA),and bat algorithm(BA)to establish a hybrid machine learning optimization algorithm,and proposes an improved grey wolf optimization(IGWO)algorithm.The IGWO-MLP model obtained the minimum root mean square error(RMSE)by using the 5-fold cross-validation method for the training data.For the pore pressure data in Well 2 and Well 3,the coefficients of determination(R^(2))of SVM,RF,XGB,and MLP are 0.9930 and 0.9446,0.9943 and 0.9472,0.9945 and 0.9488,0.9949 and 0.9574.MLP achieves optimal performance on both training and test data,and the MLP model shows a high degree of generalization.It indicates that the IGWO-MLP is an excellent predictor of pore pressure and can be used to predict pore pressure.
文摘The present research work attempted to delineate and characterize the reservoir facies from the Dawson Canyon Formation in the Penobscot field,Scotian Basin.An integrated study of instantaneous frequency,P-impedance,volume of clay and neutron-porosity attributes,and structural framework was done to unravel the Late Cretaceous depositional system and reservoir facies distribution patterns within the study area.Fault strikes were found in the EW and NEE-SWW directions indicating the dominant course of tectonic activities during the Late Cretaceous period in the region.P-impedance was estimated using model-based seismic inversion.Petrophysical properties such as the neutron porosity(NPHI)and volume of clay(VCL)were estimated using the multilayer perceptron neural network with high accuracy.Comparatively,a combination of low instantaneous frequency(15-30 Hz),moderate to high impedance(7000-9500 gm/cc*m/s),low neutron porosity(27%-40%)and low volume of clay(40%-60%),suggests fair-to-good sandstone development in the Dawson Canyon Formation.After calibration with the welllog data,it is found that further lowering in these attribute responses signifies the clean sandstone facies possibly containing hydrocarbons.The present study suggests that the shale lithofacies dominates the Late Cretaceous deposition(Dawson Canyon Formation)in the Penobscot field,Scotian Basin.Major faults and overlying shale facies provide structural and stratigraphic seals and act as a suitable hydrocarbon entrapment mechanism in the Dawson Canyon Formation's reservoirs.The present research advocates the integrated analysis of multi-attributes estimated using different methods to minimize the risk involved in hydrocarbon exploration.
文摘In the research published in the World Journal of Clinical Cases,Wang and Long conducted a quantitative analysis to delineate the risk factors for intensive care unit-acquired weakness(ICU-AW)utilizing advanced machine learning methodologies.The study employed a multilayer perceptron neural network to accurately predict the incidence of ICU-AW,focusing on critical variables such as ICU stay duration and mechanical ventilation.This research marks a significant advancement in applying machine learning to clinical diagnostics,offering a new paradigm for predictive medicine in critical care.It underscores the importance of integrating artificial intelligence technologies in clinical practice to enhance patient management strategies and calls for interdisciplinary collaboration to drive innovation in healthcare.
文摘This document presents a framework for recognizing people by palm vein distribution analysis using cross-correlation based signatures to obtain descriptors. Haar wavelets are useful in reducing the number of features while maintaining high recognition rates. This experiment achieved 97.5% of individuals classified correctly with two levels of Haar wavelets. This study used twelve-version of RGB and NIR (near infrared) wavelength images per individual. One hundred people were studied;therefore 4,800 instances compose the complete database. A Multilayer Perceptron (MLP) was trained to improve the recognition rate in a k-fold cross-validation test with k = 10. Classification results using MLP neural network were obtained using Weka (open source machine learning software).
基金The National High Technology Research and Development Program of China (863 Program) (No.2008AA01Z227)the Cultivatable Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of China (No.706028)
文摘In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. By the learning ability of the NN and the closely approximate unknown function to any degree of desired accuracy,the input-output mapping relationship between coordinates and the measurement data of time of arrival (TOA) and time difference of arrival (TDOA) is established. A real-time learning algorithm based on the extended Kalman filter (EKF) is used to train the multilayer perceptron (MLP) network by treating the linkweights of a network as the states of the nonlinear dynamic system. Since the EKF-based learning algorithm approximately gives the minimum variance estimate of the linkweights,the convergence is improved in comparison with the backwards error propagation (BP) algorithm. Numerical results illustrate thatthe proposedalgorithmcanachieve enhanced accuracy,and the performance ofthe algorithmis betterthanthat of the BP-based NN algorithm and the least squares (LS) algorithm in the NLOS environments. Moreover,this location method does not depend on a particular distribution of the NLOS error and does not need line-of-sight ( LOS ) or NLOS identification.
文摘Background:Improving financial time series forecasting is one of the most challenging and vital issues facing numerous financial analysts and decision makers.Given its direct impact on related decisions,various attempts have been made to achieve more accurate and reliable forecasting results,of which the combining of individual models remains a widely applied approach.In general,individual models are combined under two main strategies:series and parallel.While it has been proven that these strategies can improve overall forecasting accuracy,the literature on time series forecasting remains vague on the choice of an appropriate strategy to generate a more accurate hybrid model.Methods:Therefore,this study’s key aim is to evaluate the performance of series and parallel strategies to determine a more accurate one.Results:Accordingly,the predictive capabilities of five hybrid models are constructed on the basis of series and parallel strategies compared with each other and with their base models to forecast stock price.To do so,autoregressive integrated moving average(ARIMA)and multilayer perceptrons(MLPs)are used to construct two series hybrid models,ARIMA-MLP and MLP-ARIMA,and three parallel hybrid models,simple average,linear regression,and genetic algorithm models.Conclusion:The empirical forecasting results for two benchmark datasets,that is,the closing of the Shenzhen Integrated Index(SZII)and that of Standard and Poor’s 500(S&P 500),indicate that although all hybrid models perform better than at least one of their individual components,the series combination strategy produces more accurate hybrid models for financial time series forecasting.
文摘In this study, the author will investigate and utilize advanced machine learning models related to two different methodologies to determine the best and most effective way to predict individuals with heart failure and cardiovascular diseases. The first methodology involves a list of classification machine learning algorithms, and the second methodology involves the use of a deep learning algorithm known as MLP or Multilayer Perceptrons. Globally, hospitals are dealing with cases related to cardiovascular diseases and heart failure as they are major causes of death, not only for overweight individuals but also for those who do not adopt a healthy diet and lifestyle. Often, heart failures and cardiovascular diseases can be caused by many factors, including cardiomyopathy, high blood pressure, coronary heart disease, and heart inflammation [1]. Other factors, such as irregular shocks or stress, can also contribute to heart failure or a heart attack. While these events cannot be predicted, continuous data from patients’ health can help doctors predict heart failure. Therefore, this data-driven research utilizes advanced machine learning and deep learning techniques to better analyze and manipulate the data, providing doctors with informative decision-making tools regarding a person’s likelihood of experiencing heart failure. In this paper, the author employed advanced data preprocessing and cleaning techniques. Additionally, the dataset underwent testing using two different methodologies to determine the most effective machine-learning technique for producing optimal predictions. The first methodology involved employing a list of supervised classification machine learning algorithms, including Naïve Bayes (NB), KNN, logistic regression, and the SVM algorithm. The second methodology utilized a deep learning (DL) algorithm known as Multilayer Perceptrons (MLPs). This algorithm provided the author with the flexibility to experiment with different layer sizes and activation functions, such as ReLU, logistic (sigmoid), and Tanh. Both methodologies produced optimal models with high-level accuracy rates. The first methodology involves a list of supervised machine learning algorithms, including KNN, SVM, Adaboost, Logistic Regression, Naive Bayes, and Decision Tree algorithms. They achieved accuracy rates of 86%, 89%, 89%, 81%, 79%, and 99%, respectively. The author clearly explained that Decision Tree algorithm is not suitable for the dataset at hand due to overfitting issues. Therefore, it was discarded as an optimal model to be used. However, the latter methodology (Neural Network) demonstrated the most stable and optimal accuracy, achieving over 87% accuracy while adapting well to real-life situations and requiring low computing power overall. A performance assessment and evaluation were carried out based on a confusion matrix report to demonstrate feasibility and performance. The author concluded that the performance of the model in real-life situations can advance not only the medical field of science but also mathematical concepts. Additionally, the advanced preprocessing approach behind the model can provide value to the Data Science community. The model can be further developed by employing various optimization techniques to handle even larger datasets related to heart failures. Furthermore, different neural network algorithms can be tested to explore alternative approaches and yield different results.
文摘Machine learning(ML)has taken the world by a tornado with its prevalent applications in automating ordinary tasks and using turbulent insights throughout scientific research and design strolls.ML is a massive area within artificial intelligence(AI)that focuses on obtaining valuable information out of data,explaining why ML has often been related to stats and data science.An advanced meta-heuristic optimization algorithm is proposed in this work for the optimization problem of antenna architecture design.The algorithm is designed,depending on the hybrid between the Sine Cosine Algorithm(SCA)and the Grey Wolf Optimizer(GWO),to train neural networkbased Multilayer Perceptron(MLP).The proposed optimization algorithm is a practical,versatile,and trustworthy platform to recognize the design parameters in an optimal way for an endorsement double T-shaped monopole antenna.The proposed algorithm likewise shows a comparative and statistical analysis by different curves in addition to the ANOVA and T-Test.It offers the superiority and validation stability evaluation of the predicted results to verify the procedures’accuracy.
基金supported by the Beijing Municipal Science and Technology Project,China (Z151100001015004)
文摘This research aimed to improve selection of pepper seeds for separating high-quality seeds from low-quality seeds. Past research has shown that seed vigor is significantly related to the seed color and size, thus several physical features were identified as candidate predictors of high seed quality. Image recognition software was used to automate recognition of seed feature quality using 400 kernels of pepper cultivar 101. In addition, binary logistic regression and a neural network were applied to determine models with high predictive value of seed germination. Single-kernel germination tests were conducted to validate the predictive value of the identified features. The best predictors of seed vigor were determined by the highest correlation observed between the physical features and the subsequent fresh weight of seedlings that germinated from the 400 seeds. Correlation analysis showed that fresh weight was significantly positively correlated with eight physical features: three color features (R, a*, brightness), width, length, projected area, and single-kernel density, and weight. In contrast, fresh weight significantly negatively correlated with the feature of hue. In analyses of two of the highest correlating single features,' germination percentage increased from 59.3 to 71.8% when a*〉3, and selection rate peaked at 57.8%. Germination percentage increased from 59.3 to 79.4%, and the selection rate reached 76.8%, when single-kernel weight 〉0.0064 g. The most effective model was based on a multilayer perceptron (MLP) neural network, consisting of 15 physical traits as variables, and a stability calculated as 99.4%. Germination percentage in a calibration set of seeds was 79.1% and the selection rate was 90.0%. These results indicated that the model was effective in predicting seed germination based on physical features and could be used as a guide for quality control in seed selection. Automated systems based on machine vision and model classifiers can contribute to reducing the costs and labor required in the selection of pepper seeds.
文摘Metamaterial Antenna is a special class of antennas that uses metamaterial to enhance their performance.Antenna size affects the quality factor and the radiation loss of the antenna.Metamaterial antennas can overcome the limitation of bandwidth for small antennas.Machine learning(ML)model is recently applied to predict antenna parameters.ML can be used as an alternative approach to the trial-and-error process of finding proper parameters of the simulated antenna.The accuracy of the prediction depends mainly on the selected model.Ensemble models combine two or more base models to produce a better-enhanced model.In this paper,a weighted average ensemble model is proposed to predict the bandwidth of the Metamaterial Antenna.Two base models are used namely:Multilayer Perceptron(MLP)and Support Vector Machines(SVM).To calculate the weights for each model,an optimization algorithm is used to find the optimal weights of the ensemble.Dynamic Group-Based Cooperative Optimizer(DGCO)is employed to search for optimal weight for the base models.The proposed model is compared with three based models and the average ensemble model.The results show that the proposed model is better than other models and can predict antenna bandwidth efficiently.
文摘Global warming is one of the most complicated challenges of our time causing considerable tension on our societies and on the environment.The impacts of global warming are felt unprecedentedly in a wide variety of ways from shifting weather patterns that threatens food production,to rising sea levels that deteriorates the risk of catastrophic flooding.Among all aspects related to global warming,there is a growing concern on water resource management.This field is targeted at preventing future water crisis threatening human beings.The very first stage in such management is to recognize the prospective climate parameters influencing the future water resource conditions.Numerous prediction models,methods and tools,in this case,have been developed and applied so far.In line with trend,the current study intends to compare three optimization algorithms on the platform of a multilayer perceptron(MLP)network to explore any meaningful connection between large-scale climate indices(LSCIs)and precipitation in the capital of Iran,a country which is located in an arid and semi-arid region and suffers from severe water scarcity caused by mismanagement over years and intensified by global warming.This situation has propelled a great deal of population to immigrate towards more developed cities within the country especially towards Tehran.Therefore,the current and future environmental conditions of this city especially its water supply conditions are of great importance.To tackle this complication an outlook for the future precipitation should be provided and appropriate forecasting trajectories compatible with this region's characteristics should be developed.To this end,the present study investigates three training methods namely backpropagation(BP),genetic algorithms(GAs),and particle swarm optimization(PSO)algorithms on a MLP platform.Two frameworks distinguished by their input compositions are denoted in this study:Concurrent Model Framework(CMF)and Integrated Model Framework(IMF).Through these two frameworks,13 cases are generated:12 cases within CMF,each of which contains all selected LSCIs in the same lead-times,and one case within IMF that is constituted from the combination of the most correlated LSCIs with Tehran precipitation in each lead-time.Following the evaluation of all model performances through related statistical tests,Taylor diagram is implemented to make comparison among the final selected models in all three optimization algorithms,the best of which is found to be MLP-PSO in IMF.
文摘Soil salinization is one of the most predominant environmental hazards responsible for agricultural land degradation,especially in the arid and semi-arid regions.An accurate spatial prediction and modeling of soil salinity in agricultural land are so important for farmers and decision-makers to develop the appropriate mechanisms to prevent the loss of fertile soil and increase crop production.El Outaya plain is marked by soil salinity increases due to the excessive use of poor groundwater quality for irrigation.This study aims to compare the performance of simple kriging,cokriging(SCOK),multilayer perceptron neural networks(MLP-NN),and support vector machines(SVM)in the prediction of topsoil and subsoil salinity.The field covariates including geochemical properties of irrigation groundwater and physical properties of soil and environmental covariates including digital elevation model and remote sensing derivatives were used as input candidates to SCOK,MLP-NN,and SVM.The optimal input combination was determined using multiple linear stepwise regression(MLSR).The results revealed that the SCOK using field covariates including water electrical conductivity(ECw)and sand percentage(sand%),and environmental covariates including land surface temperature(LST),topographic wetness index(TWI),and elevation could significantly increase the accuracy of soil salinity spatial prediction.The comparison of the prediction accuracy of the different modeling techniques using the Taylor diagram indicated that MLP-NN using LST,TWI,and elevation as inputs were more accurate in predicting the topsoil salinity[ECs(TS)]with a mean absolute error(MAE)of 0.43,root mean square error(RMSE)of 0.6 and correlation coefficient of 0.946.MLP-NN using ECw and sand%as inputs were more accurate in predicting the subsoil salinity[ECs(SS)]with MAE of 0.38,RMSE of0.6,and R of 0.968.
基金Funding for this study is received from Taif University Researchers Supporting Project No.(Project No.TURSP-2020/150)Taif University,Taif,Saudi Arabia。
文摘Digital signal processing of electroencephalography(EEG)data is now widely utilized in various applications,including motor imagery classification,seizure detection and prediction,emotion classification,mental task classification,drug impact identification and sleep state classification.With the increasing number of recorded EEG channels,it has become clear that effective channel selection algorithms are required for various applications.Guided Whale Optimization Method(Guided WOA),a suggested feature selection algorithm based on Stochastic Fractal Search(SFS)technique,evaluates the chosen subset of channels.This may be used to select the optimum EEG channels for use in Brain-Computer Interfaces(BCIs),the method for identifying essential and irrelevant characteristics in a dataset,and the complexity to be eliminated.This enables(SFS-Guided WOA)algorithm to choose the most appropriate EEG channels while assisting machine learning classification in its tasks and training the classifier with the dataset.The(SFSGuided WOA)algorithm is superior in performance metrics,and statistical tests such as ANOVA and Wilcoxon rank-sum are used to demonstrate this.
基金supported by the National Natural Science Foundation of China under Grant 62071364in part by the Aeronautical Science Foundation of China under Grant 2020Z073081001+2 种基金in part by the Fundamental Research Funds for the Central Universities under Grant JB210104in part by the Shaanxi Provincial Key Research and Development Program under Grant 2019GY-043in part by the 111 Project under Grant B08038。
文摘Passive detection of moving target is an important part of intelligent surveillance. Satellite has the potential to play a key role in many applications of space-air-ground integrated networks(SAGIN). In this paper, we propose a novel intelligent passive detection method for aerial target based on reservoir computing networks. Specifically, delayed feedback networks are utilized to refine the direct signals from the satellite in the reference channels. In addition, the satellite direct wave interference in the monitoring channels adopts adaptive interference suppression using the minimum mean square error filter. Furthermore, we employ decoupling echo state networks to predict the clutter interference in the monitoring channels and construct the detection statistics accordingly. Finally, a multilayer perceptron is adopted to detect the echo signal after interference suppression. Extensive simulations is conducted to evaluate the performance of our proposed method. Results show that the detection probability is almost 100% when the signal-to-interference ratio of echo signal is-36 dB, which demonstrates that our proposed method achieves efficient passive detection for aerial targets in typical SAGIN scenarios.