A lateral flow immunoassay(LFA)biosensor that allows the sensitive and accurate identification of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)and other common respiratory viruses remains highly desired ...A lateral flow immunoassay(LFA)biosensor that allows the sensitive and accurate identification of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)and other common respiratory viruses remains highly desired in the face of the coronavirus disease 2019 pandemic.Here,we propose a multiplex LFA method for the on-site,rapid,and highly sensitive screening of multiple respiratory viruses,using a multilayered film-likefluorescent tag as the performance enhancement and signal amplification tool.This film-like three-dimensional(3D)tag was prepared through the layer-by-layer assembly of highly photostable CdSe@ZnS-COOH quantum dots(QDs)onto the surfaces of monolayer graphene oxide nanosheets,which can provide larger reaction interfaces and specific active surface areas,higher QD loads,and better luminescence and dispersibility than traditional spherical fluorescent microspheres for LFA applications.The constructedfluorescent LFA biosensor can simultaneously and sensitively quantify SARS-CoV-2,influenza A virus,and human adenovirus with low detection limits(8 pg/mL,488 copies/mL,and 471 copies/mL),short assay time(15 min),good reproducibility,and high accuracy.Moreover,our proposed assay has great potential for the early diagnosis of respiratory virus infections given its robustness when validated in real saliva samples.展开更多
The paper presents second approximation model for optical head in super high-density storage technology firstly and it is an important part for three grades approximate model of ultra-small-size quantum well corn-shap...The paper presents second approximation model for optical head in super high-density storage technology firstly and it is an important part for three grades approximate model of ultra-small-size quantum well corn-shaped laser and simulative calculations. It supplies the important and useful results for the NFOD optical head design with ultra thin active layer and ultra small spot laser.展开更多
基金supported by the National Natural Science Foundation of China(Nos.81830101 and 32200076)the National Science and Technology Major Project for Infectious Diseases Control(Nos.2018ZX10712001-010 and 2018ZX10101003-001)+1 种基金the Natural Science Foundation of Anhui Province(No.2208085MB29)The authors would like to thank Prof.Chengfeng Qin from Beijing Institute of Microbiology and Epidemiology for providing inactivated SARS-CoV-2 virions,and thank Ms.Le Zhao of National Center for Nanoscience and Technology for helping to conduct SEM analysis.
文摘A lateral flow immunoassay(LFA)biosensor that allows the sensitive and accurate identification of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)and other common respiratory viruses remains highly desired in the face of the coronavirus disease 2019 pandemic.Here,we propose a multiplex LFA method for the on-site,rapid,and highly sensitive screening of multiple respiratory viruses,using a multilayered film-likefluorescent tag as the performance enhancement and signal amplification tool.This film-like three-dimensional(3D)tag was prepared through the layer-by-layer assembly of highly photostable CdSe@ZnS-COOH quantum dots(QDs)onto the surfaces of monolayer graphene oxide nanosheets,which can provide larger reaction interfaces and specific active surface areas,higher QD loads,and better luminescence and dispersibility than traditional spherical fluorescent microspheres for LFA applications.The constructedfluorescent LFA biosensor can simultaneously and sensitively quantify SARS-CoV-2,influenza A virus,and human adenovirus with low detection limits(8 pg/mL,488 copies/mL,and 471 copies/mL),short assay time(15 min),good reproducibility,and high accuracy.Moreover,our proposed assay has great potential for the early diagnosis of respiratory virus infections given its robustness when validated in real saliva samples.
基金Supported by the National Natural Science Foundation of China and Doctor Foundation of China
文摘The paper presents second approximation model for optical head in super high-density storage technology firstly and it is an important part for three grades approximate model of ultra-small-size quantum well corn-shaped laser and simulative calculations. It supplies the important and useful results for the NFOD optical head design with ultra thin active layer and ultra small spot laser.