Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and p...Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.展开更多
Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do ...Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do not involve any special data structure,and do not induce savings in memory requirements,they are easily implemented on existing codes and are recommended for 1D and 2D simulations when intensive testing is required.The multilevel technique can also be applied to balance laws,but in this case,numerical errors may be induced by the technique.We present a series of numerical tests that point out that the use of monotonicity-preserving interpolatory techniques eliminates the numerical errors observed when using the usual 4-point centered Lagrange interpolation,and leads to a more robust multilevel code for balance laws,while maintaining the efficiency rates observed forhyperbolic conservation laws.展开更多
This study aims to investigate the mechanical response and acoustic emission(AE)characteristic of pre-flawed sandstone under both monotonic and multilevel constant-amplitude cyclic loads.Specifically,we explored how c...This study aims to investigate the mechanical response and acoustic emission(AE)characteristic of pre-flawed sandstone under both monotonic and multilevel constant-amplitude cyclic loads.Specifically,we explored how coplanar flaw angle and load type impact the strength and deformation behavior and microscopic damage mechanism.Results indicated that being fluctuated before rising with increasing fissure angle under monotonic loading,the peak strength of the specimen first increased slowly and then steeply under cyclic loading.The effect of multilevel cyclic loading on the mechanical parameters was more significant.For a single fatigue stage,the specimen underwent greater deformation in early cycles,which subsequently stabilized.Similar variation pattern was also reflected by AE count/energy/b-value.Crack behaviors were dominated by the fissure angle and load type and medium-scale crack accounted for 74.83%–86.44%of total crack.Compared with monotonic loading,crack distribution of specimen under cyclic loading was more complicated.Meanwhile,a simple model was proposed to describe the damage evolution of sandstone under cyclic loading.Finally,SEM images revealed that the microstructures at the fracture were mainly composed of intergranular fracture,and percentage of transgranular fracture jumped under cyclic loading due to the rapid release of elastic energy caused by high loading rate.展开更多
The exponential advancement in telecommunication embeds the Internet in every aspect of communication.Interconnections of networks all over the world impose monumental risks on the Internet.A Flooding Attack(FA)is one...The exponential advancement in telecommunication embeds the Internet in every aspect of communication.Interconnections of networks all over the world impose monumental risks on the Internet.A Flooding Attack(FA)is one of the major intimidating risks on the Internet where legitimate users are prevented from accessing network services.Irrespective of the protective measures incorporated in the communication infrastructure,FA still persists due to the lack of global cooperation.Most of the existing mitigation is set up either at the traffic starting point or at the traffic ending point.Providing mitigation at one or the other end may not be a complete solution.To insist on better protection againstflooding attacks,this work proposes a cooperative multilevel defense mechanism.The proposed cooperative multilevel defense mechanism consists of two-level of mitigation.In thefirst level,it is proposed to design a Threshold-based rate-limiting with a Spoofing Resistant Tag(TSRT),as a source end countermeasure for High-Rate Flooding Attacks(HRFA)and spoofing attacks.In the second level,the accent is to discriminate normal traffic after Distributed Denial of Service(DDoS)traffic and drop the DDoS traffic at the destination end.Flow Congruence-based Selective Pushback(FCSP),as a destination-initiated countermeasure for the Low Rate Flooding Attack(LRFA).The source and the destination cooperate to identify and block the attack.A key advantage of this cooperative mechanism is that it can distinguish and channel down the attack traffic nearer to the starting point of the attack.The presentation of the agreeable cooperative multilevel safeguard mechanism is approved through broad recreation in NS-2.The investigation and the exploratory outcomes show that the proposed plan can effectively identify and shield from the attack.展开更多
Biomedical image processing acts as an essential part of severalmedical applications in supporting computer aided disease diagnosis. MagneticResonance Image (MRI) is a commonly utilized imaging tool used tosave glioma...Biomedical image processing acts as an essential part of severalmedical applications in supporting computer aided disease diagnosis. MagneticResonance Image (MRI) is a commonly utilized imaging tool used tosave glioma for clinical examination. Biomedical image segmentation plays avital role in healthcare decision making process which also helps to identifythe affected regions in the MRI. Though numerous segmentation models areavailable in the literature, it is still needed to develop effective segmentationmodels for BT. This study develops a salp swarm algorithm with multi-levelthresholding based brain tumor segmentation (SSAMLT-BTS) model. Thepresented SSAMLT-BTS model initially employs bilateral filtering based onnoise removal and skull stripping as a pre-processing phase. In addition,Otsu thresholding approach is applied to segment the biomedical imagesand the optimum threshold values are chosen by the use of SSA. Finally,active contour (AC) technique is used to identify the suspicious regions in themedical image. A comprehensive experimental analysis of the SSAMLT-BTSmodel is performed using benchmark dataset and the outcomes are inspectedin many aspects. The simulation outcomes reported the improved outcomesof the SSAMLT-BTS model over recent approaches with maximum accuracyof 95.95%.展开更多
The strict and high-standard requirements for the safety and stability ofmajor engineering systems make it a tough challenge for large-scale finite element modal analysis.At the same time,realizing the systematic anal...The strict and high-standard requirements for the safety and stability ofmajor engineering systems make it a tough challenge for large-scale finite element modal analysis.At the same time,realizing the systematic analysis of the entire large structure of these engineering systems is extremely meaningful in practice.This article proposes a multilevel hierarchical parallel algorithm for large-scale finite element modal analysis to reduce the parallel computational efficiency loss when using heterogeneous multicore distributed storage computers in solving large-scale finite element modal analysis.Based on two-level partitioning and four-transformation strategies,the proposed algorithm not only improves the memory access rate through the sparsely distributed storage of a large amount of data but also reduces the solution time by reducing the scale of the generalized characteristic equation(GCEs).Moreover,a multilevel hierarchical parallelization approach is introduced during the computational procedure to enable the separation of the communication of inter-nodes,intra-nodes,heterogeneous core groups(HCGs),and inside HCGs through mapping computing tasks to various hardware layers.This method can efficiently achieve load balancing at different layers and significantly improve the communication rate through hierarchical communication.Therefore,it can enhance the efficiency of parallel computing of large-scale finite element modal analysis by fully exploiting the architecture characteristics of heterogeneous multicore clusters.Finally,typical numerical experiments were used to validate the correctness and efficiency of the proposedmethod.Then a parallel modal analysis example of the cross-river tunnel with over ten million degrees of freedom(DOFs)was performed,and ten-thousand core processors were applied to verify the feasibility of the algorithm.展开更多
Recent advancements in power electronics technology evolves inverter fed electric motors.Speed signals and rotor position are essential for controlling an electric motor accurately.In this paper,the sensorless speed c...Recent advancements in power electronics technology evolves inverter fed electric motors.Speed signals and rotor position are essential for controlling an electric motor accurately.In this paper,the sensorless speed control of surface-mounted permanent magnet synchronous motor(SPMSM)has been attempted.SPMSM wants a digital inverter for its precise working.Hence,this study incor-poratesfifteen level inverter to the SPMSM.A sliding mode observer(SMO)based sensorless speed control scheme is projected to determine rotor spot and speed of the multilevel inverter(MLI)fed SPMSM.MLI has been operated using a multi carrier pulse width modulation(MCPWM)strategy for generation offif-teen level voltages.The simulation works are executed with MATLAB/SIMU-LINK software.The steadiness and the heftiness of the projected model have been investigated under no loaded and loaded situations of SPMSM.Furthermore,the projected method can be adapted for electric vehicles.展开更多
Multilevel phase-change memory is an attractive technology to increase storage capacity and density owing to its high-speed,scalable and non-volatile characteristics.However,the contradiction between thermal stability...Multilevel phase-change memory is an attractive technology to increase storage capacity and density owing to its high-speed,scalable and non-volatile characteristics.However,the contradiction between thermal stability and operation speed is one of key factors to restrain the development of phase-change memory.Here,N-doped Ge_(2)Sb_(2)Te_(5)-based optoelectronic hybrid memory is proposed to simultaneously implement high thermal stability and ultrafast operation speed.The picosecond laser is adopted to write/erase information based on reversible phase transition characteristics whereas the resistance is detected to perform information readout.Results show that when N content is 27.4 at.%,N-doped Ge_(2)Sb_(2)Te_(5)film possesses high ten-year data retention temperature of 175℃and low resistance drift coefficient of 0.00024 at 85℃,0.00170 at 120℃,and 0.00249 at 150℃,respectively,owing to the formation of Ge–N,Sb–N,and Te–N bonds.The SET/RESET operation speeds of the film reach 520 ps/13 ps.In parallel,the reversible switching cycle of the corresponding device is realized with the resistance ratio of three orders of magnitude.Four-level reversible resistance states induced by various crystallization degrees are also obtained together with low resistance drift coefficients.Therefore,the N-doped Ge_(2)Sb_(2)Te_(5)thin film is a promising phase-change material for ultrafast multilevel optoelectronic hybrid storage.展开更多
To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is ex...To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is expanded to a multilevel Otsu thresholding algorithm. Secondly a firefly algorithm with opposition-learning OFA is proposed.In the OFA opposite fireflies are generated to increase the diversity of the fireflies and improve the global search ability. Thirdly the OFA is applied to searching multilevel thresholds for image segmentation. Finally the proposed method is implemented to segment the QFN images with defects and the results are compared with three methods i.e. the exhaustive search method the multilevel Otsu thresholding method based on particle swarm optimization and the multilevel Otsu thresholding method based on the firefly algorithm. Experimental results show that the proposed method can segment QFN surface defects images more efficiently and at a greater speed than that of the other three methods.展开更多
The various configurations of multilevel inverter involve the use of more numbers of switching devices, energy storage devices and/or unidirectional devices. Each switching unit necessitates the add-on driver circuit ...The various configurations of multilevel inverter involve the use of more numbers of switching devices, energy storage devices and/or unidirectional devices. Each switching unit necessitates the add-on driver circuit for proper functionality. Cascaded H-Bridge Multilevel Inverter requires overlapped switching pulses for the switching devices in positive and negative arms of the bridge which may lead to short circuit during the device failure. This work addresses the problems in different configurations of multilevel inverter by using reduced number of switching and energy storage devices and driver circuits. In the present approach Single Switch is used for each stair case positive output and single H-Bridge for phase reversal. Driver circuits are reduced by using the property of body diode of the MOSFET. Switching pulses are generated by Arduino Development Board. The circuit is simulated using Matlab. More so, through experimental means, it is physically tested and results are analyzed for the 5-step inverter and thereby simulation is fully validated. Consequently, cycloconverter operation of the circuit is simulated using Matlab. Moreover, half bridge configuration of the multilevel inverter is also analyzed for high frequency induction heating applications.展开更多
In the multilevel thresholding segmentation of the image, the classification number is always given by the supervisor. To solve this problem, a fast multilevel thresholding algorithm considering both the threshold val...In the multilevel thresholding segmentation of the image, the classification number is always given by the supervisor. To solve this problem, a fast multilevel thresholding algorithm considering both the threshold value and the classification number is proposed based on the maximum entropy, and the self-adaptive criterion of the classification number is given. The algorithm can obtain thresholds and automatically decide the classification number. Experimental results show that the algorithm is effective.展开更多
[Objective] The study was to explore the major factors affecting diary cattle brucellosis risk assessment,as well as their strong-to-weak sequence,so as to provide theoretical basis for assessing diary cattle brucello...[Objective] The study was to explore the major factors affecting diary cattle brucellosis risk assessment,as well as their strong-to-weak sequence,so as to provide theoretical basis for assessing diary cattle brucellosis risk level in different regions.[Method] From 4 dimensions of feeding and importing,breeding,housing and polyculture situation,an evaluation index system was set up,and diary cattle brucellosis risk survey was conducted in 3 typical regions.Finally,systematic multilevel grey relation entropy method was applied to perform data analysis.[Result] The strong-to-weak sequence of Level 1 impact factor of diary cattle brucellosis was as follows:feeding and importinghousingpolyculture situationbreeding;the sequence of Level 2 impact factor was U32〉U12〉U11〉U31〉U21〉U42〉U43〉U23〉U22〉U41;the risk level sequence of 3 typical regions was Province A(County A1,A2,A3)Province B(County B1,B2,B3)Province C(County C1,C2,C3).[Conclusion] According to the weight of Level 1 index strata,administrative departments at all levels and dairy cattle farmers should lay emphasis on the aspects of feeding,importing and housing;viewed from the perspective of Level 2 index strata,dairy cattle farmers should value the siting of cattle field,the brucellosis surveillance before importing and milking modes most.According to the diary cattle brucellosis risk level of 3 typical regions,if administrative departments at all levels strengthen peoples' awareness of their personal health and increase investment in this area,with new healthy cultured atmosphere built,the risk level of diary cattle brucellosis will surly decline.展开更多
This work presents an implementation of an innovative single phase multilevel inverter using capacitors with reduced switches. The proposed Capacitor pattern H-bridge Multilevel Inverter (CPHMLI) topology consists of ...This work presents an implementation of an innovative single phase multilevel inverter using capacitors with reduced switches. The proposed Capacitor pattern H-bridge Multilevel Inverter (CPHMLI) topology consists of a proper number of Capacitor connected with switches and power sources. The advanced switching control supplied by Pulse Width Modulation (PDPWM) to attain mixed staircase switching state. The charging and discharging mode are achieved by calculating the voltage error at the load. Furthermore, to accomplish the higher voltage levels at the output with less number of semiconductors switches and simple commutation designed using CPHMLI topology. To prove the performance and effectiveness of the proposed approach, a set of experiments performed under various load conditions using MATLAB tool.展开更多
Land degradation causes serious environmental problems in many regions of the world, and although it can be effectively assessed and monitored using a time series of rainfall and a normalized difference vegetation ind...Land degradation causes serious environmental problems in many regions of the world, and although it can be effectively assessed and monitored using a time series of rainfall and a normalized difference vegetation index (NDVI) from remotely-sensed imagery, dividing human-induced land degradation from vegetation dynamics due to climate change is not a trivial task. This paper presented a multilevel statistical modeling of the NDVI-rainfall relationship to detect human-induced land degradation at local and landscape scales in the Ordos Plateau of Inner Mongolia, China, and recognized that anthropogenic activities result in either positive (land restoration and re-vegetation) or negative (degradation) trends. Linear regressions were used to assess the accuracy of the multi- level statistical model. The results show that: (1) land restoration was the dominant process in the Ordos Plateau between 1998 and 2012; (2) the effect of the statistical removal of precipitation revealed areas of human-induced land degradation and improvement, the latter reflecting successful restoration projects and changes in land man- agement in many parts of the Ordos; (3) compared to a simple linear regression, multilevel statistical modeling could be used to analyze the relationship between the NDVI and rainfall and improve the accuracy of detecting the effect of human activities. Additional factors should be included when analyzing the NDVI-rainfall relationship and detecting human-induced loss of vegetation cover in drylands to improve the accuracy of the approach and elimi- nate some observed non-significant residual trends.展开更多
The method of establishing data structures plays an important role in the efficiency of parallel multilevel fast multipole algorithm(PMLFMA).Considering the main complements of multilevel fast multipole algorithm(M...The method of establishing data structures plays an important role in the efficiency of parallel multilevel fast multipole algorithm(PMLFMA).Considering the main complements of multilevel fast multipole algorithm(MLFMA) memory,a new parallelization strategy and a modified data octree construction scheme are proposed to further reduce communication in order to improve parallel efficiency.For far interaction,a new scheme called dynamic memory allocation is developed.To analyze the workload balancing performance of a parallel implementation,the original concept of workload balancing factor is introduced and verified by numerical examples.Numerical results show that the above measures improve the parallel efficiency and are suitable for the analysis of electrical large-scale scattering objects.展开更多
In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding....In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding. These new energy based objective criterions are further combined with the proficient search capability of swarm based algorithms to improve the efficiency and robustness. The proposed multilevel thresholding approach accurately determines the optimal threshold values by using generated energy curve, and acutely distinguishes different objects within the multi-channel complex images. The performance evaluation indices and experiments on different test images illustrate that Kapur's entropy aided with differential evolution and bacterial foraging optimization algorithm generates the most accurate and visually pleasing segmented images.展开更多
For nuclear measurements,it is necessary to obtain accurate information from nuclear pulses,which should be obtained by first shaping the pulses outputted by the detectors.However,commonly used pulse-shaping algorithm...For nuclear measurements,it is necessary to obtain accurate information from nuclear pulses,which should be obtained by first shaping the pulses outputted by the detectors.However,commonly used pulse-shaping algorithms have certain problems.For example,certain pulse-shaping algorithms have long dead-times in high-counting-rate environments or are difficult to achieve in digital systems.Gaussian signals are widely used in analog nuclear instruments owing to their symmetry and completeness.A Gaussian signal is usually implemented by using a multilevel S–K filter in series or in parallel.It is difficult to construct a real-time digital Gaussian filter for the complex Gaussian filtering algorithm.Based on the multilevel cascade convolution,a pulse-shaping algorithm for double exponential signals is proposed in this study,which,in addition to double exponential signals,allows more complex output signal models to be used in the new algorithm.The proposed algorithm can be used in high-counting-rate environments and has been implemented in an FPGA with fewer multipliers than those required in other traditional Gaussian pulse-shaping algorithms.The offline processing results indicated that the average peak base width of the output-shaped pulses obtained using the proposed algorithm was reduced compared with that obtained using the traditional Gaussian pulse-shaping algorithm.Experimental results also demonstrated that signal-to-noise ratios and energy resolutions were improved,particularly for pulses with a low energy.The energy resolution was improved by 0.1–0.2%while improving the counting rate.展开更多
As a result of the interplay between advances in computer hardware, software, and algorithm, we are now in a new era of large-scale reservoir simulation, which focuses on accurate flow description, fine reservoir char...As a result of the interplay between advances in computer hardware, software, and algorithm, we are now in a new era of large-scale reservoir simulation, which focuses on accurate flow description, fine reservoir characterization, efficient nonlinear/linear solvers, and parallel implementation. In this paper, we discuss a multilevel preconditioner in a new-generation simulator and its implementation on multicore computers. This preconditioner relies on the method of subspace corrections to solve large-scale linear systems arising from fully implicit methods in reservoir simulations. We investigate the parallel efficiency and robustness of the proposed method by applying it to million-cell benchmark problems.展开更多
Objective:To investigate a novel surgical method for multilevel cervical spondylotic myelopathy (CSM). Methods: Totally 21 patients with multilevel CSM undergoing a novel surgical procedure from April 2001 to Janu...Objective:To investigate a novel surgical method for multilevel cervical spondylotic myelopathy (CSM). Methods: Totally 21 patients with multilevel CSM undergoing a novel surgical procedure from April 2001 to January 2004 were analyzed retrospectively. All patients experienced anterior cervical decompression surgery in subsection, autograft fusion and internal fixation. Preoperative, immediate postoperative and follow-up image data, X-rays and semi-quantitative Japanese orthopaedics association (JOA) scores were used to evaluate the restoration of lordosis (Cobb's angle), intervertebral heights, the stability of the cervical spine and the improvement of neurological impairment. Results: Preoperative symptoms were markedly alleviated or disappeared in most of the patients. According to the JOA scores, the ratio of improvement in neurological function was 72. 2%, including excellent in 9 cases (42.9%), good in 7 cases (33.3%), fair in 3 cases (14.3%) and poor in 2 cases (9.5%). Immediate postoperative X-rays showed obvious improvements in lordosis and in the intervertebral height of the cervical spine (P〈0. 01). There is no evidence of instrument failure during the mean follow-up period of 14. 2 months (9-24 months, P〉0. 01). Conclusion:Anterior cervical decompression in subsection, autograft fusion and internal fixation is a rational effective method for the surgical treatment of multilevel CSM.展开更多
基金Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2020A1515110762Research Grants Council of the Hong Kong Special Administrative Region,China,Grant/Award Number:R6005‐20Shenzhen Key Laboratory of Advanced Energy Storage,Grant/Award Number:ZDSYS20220401141000001。
文摘Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.
基金supported by Grant PID2020-117211GB-I00funded by MCIN/AEI/10.13039/501100011033+4 种基金by Grant CIAICO/2021/227funded by the Generalitat Valencianasupported by the Ministerio de Ciencia e Innovacion of Spain(Grant Ref.PID2021-125709OB-C21)funded by MCIN/AEI/10.13039/501100011033/FEDER,UEby the Generalitat Valenciana(CIAICO/2021/224).
文摘Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do not involve any special data structure,and do not induce savings in memory requirements,they are easily implemented on existing codes and are recommended for 1D and 2D simulations when intensive testing is required.The multilevel technique can also be applied to balance laws,but in this case,numerical errors may be induced by the technique.We present a series of numerical tests that point out that the use of monotonicity-preserving interpolatory techniques eliminates the numerical errors observed when using the usual 4-point centered Lagrange interpolation,and leads to a more robust multilevel code for balance laws,while maintaining the efficiency rates observed forhyperbolic conservation laws.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.42077231 and 51574156).
文摘This study aims to investigate the mechanical response and acoustic emission(AE)characteristic of pre-flawed sandstone under both monotonic and multilevel constant-amplitude cyclic loads.Specifically,we explored how coplanar flaw angle and load type impact the strength and deformation behavior and microscopic damage mechanism.Results indicated that being fluctuated before rising with increasing fissure angle under monotonic loading,the peak strength of the specimen first increased slowly and then steeply under cyclic loading.The effect of multilevel cyclic loading on the mechanical parameters was more significant.For a single fatigue stage,the specimen underwent greater deformation in early cycles,which subsequently stabilized.Similar variation pattern was also reflected by AE count/energy/b-value.Crack behaviors were dominated by the fissure angle and load type and medium-scale crack accounted for 74.83%–86.44%of total crack.Compared with monotonic loading,crack distribution of specimen under cyclic loading was more complicated.Meanwhile,a simple model was proposed to describe the damage evolution of sandstone under cyclic loading.Finally,SEM images revealed that the microstructures at the fracture were mainly composed of intergranular fracture,and percentage of transgranular fracture jumped under cyclic loading due to the rapid release of elastic energy caused by high loading rate.
文摘The exponential advancement in telecommunication embeds the Internet in every aspect of communication.Interconnections of networks all over the world impose monumental risks on the Internet.A Flooding Attack(FA)is one of the major intimidating risks on the Internet where legitimate users are prevented from accessing network services.Irrespective of the protective measures incorporated in the communication infrastructure,FA still persists due to the lack of global cooperation.Most of the existing mitigation is set up either at the traffic starting point or at the traffic ending point.Providing mitigation at one or the other end may not be a complete solution.To insist on better protection againstflooding attacks,this work proposes a cooperative multilevel defense mechanism.The proposed cooperative multilevel defense mechanism consists of two-level of mitigation.In thefirst level,it is proposed to design a Threshold-based rate-limiting with a Spoofing Resistant Tag(TSRT),as a source end countermeasure for High-Rate Flooding Attacks(HRFA)and spoofing attacks.In the second level,the accent is to discriminate normal traffic after Distributed Denial of Service(DDoS)traffic and drop the DDoS traffic at the destination end.Flow Congruence-based Selective Pushback(FCSP),as a destination-initiated countermeasure for the Low Rate Flooding Attack(LRFA).The source and the destination cooperate to identify and block the attack.A key advantage of this cooperative mechanism is that it can distinguish and channel down the attack traffic nearer to the starting point of the attack.The presentation of the agreeable cooperative multilevel safeguard mechanism is approved through broad recreation in NS-2.The investigation and the exploratory outcomes show that the proposed plan can effectively identify and shield from the attack.
基金The author would like to express their gratitude to the Ministry of Education and the Deanship of Scientific Research-Najran University-Kingdom of Saudi Arabia for their financial and technical support under code number:NU/NRP/SERC/11/3.
文摘Biomedical image processing acts as an essential part of severalmedical applications in supporting computer aided disease diagnosis. MagneticResonance Image (MRI) is a commonly utilized imaging tool used tosave glioma for clinical examination. Biomedical image segmentation plays avital role in healthcare decision making process which also helps to identifythe affected regions in the MRI. Though numerous segmentation models areavailable in the literature, it is still needed to develop effective segmentationmodels for BT. This study develops a salp swarm algorithm with multi-levelthresholding based brain tumor segmentation (SSAMLT-BTS) model. Thepresented SSAMLT-BTS model initially employs bilateral filtering based onnoise removal and skull stripping as a pre-processing phase. In addition,Otsu thresholding approach is applied to segment the biomedical imagesand the optimum threshold values are chosen by the use of SSA. Finally,active contour (AC) technique is used to identify the suspicious regions in themedical image. A comprehensive experimental analysis of the SSAMLT-BTSmodel is performed using benchmark dataset and the outcomes are inspectedin many aspects. The simulation outcomes reported the improved outcomesof the SSAMLT-BTS model over recent approaches with maximum accuracyof 95.95%.
基金supported by the National Natural Science Foundation of China(Grant No.11772192).
文摘The strict and high-standard requirements for the safety and stability ofmajor engineering systems make it a tough challenge for large-scale finite element modal analysis.At the same time,realizing the systematic analysis of the entire large structure of these engineering systems is extremely meaningful in practice.This article proposes a multilevel hierarchical parallel algorithm for large-scale finite element modal analysis to reduce the parallel computational efficiency loss when using heterogeneous multicore distributed storage computers in solving large-scale finite element modal analysis.Based on two-level partitioning and four-transformation strategies,the proposed algorithm not only improves the memory access rate through the sparsely distributed storage of a large amount of data but also reduces the solution time by reducing the scale of the generalized characteristic equation(GCEs).Moreover,a multilevel hierarchical parallelization approach is introduced during the computational procedure to enable the separation of the communication of inter-nodes,intra-nodes,heterogeneous core groups(HCGs),and inside HCGs through mapping computing tasks to various hardware layers.This method can efficiently achieve load balancing at different layers and significantly improve the communication rate through hierarchical communication.Therefore,it can enhance the efficiency of parallel computing of large-scale finite element modal analysis by fully exploiting the architecture characteristics of heterogeneous multicore clusters.Finally,typical numerical experiments were used to validate the correctness and efficiency of the proposedmethod.Then a parallel modal analysis example of the cross-river tunnel with over ten million degrees of freedom(DOFs)was performed,and ten-thousand core processors were applied to verify the feasibility of the algorithm.
文摘Recent advancements in power electronics technology evolves inverter fed electric motors.Speed signals and rotor position are essential for controlling an electric motor accurately.In this paper,the sensorless speed control of surface-mounted permanent magnet synchronous motor(SPMSM)has been attempted.SPMSM wants a digital inverter for its precise working.Hence,this study incor-poratesfifteen level inverter to the SPMSM.A sliding mode observer(SMO)based sensorless speed control scheme is projected to determine rotor spot and speed of the multilevel inverter(MLI)fed SPMSM.MLI has been operated using a multi carrier pulse width modulation(MCPWM)strategy for generation offif-teen level voltages.The simulation works are executed with MATLAB/SIMU-LINK software.The steadiness and the heftiness of the projected model have been investigated under no loaded and loaded situations of SPMSM.Furthermore,the projected method can be adapted for electric vehicles.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62205231 and 22002102)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX223271)Jiangsu Key Laboratory for Environment Functional Materials。
文摘Multilevel phase-change memory is an attractive technology to increase storage capacity and density owing to its high-speed,scalable and non-volatile characteristics.However,the contradiction between thermal stability and operation speed is one of key factors to restrain the development of phase-change memory.Here,N-doped Ge_(2)Sb_(2)Te_(5)-based optoelectronic hybrid memory is proposed to simultaneously implement high thermal stability and ultrafast operation speed.The picosecond laser is adopted to write/erase information based on reversible phase transition characteristics whereas the resistance is detected to perform information readout.Results show that when N content is 27.4 at.%,N-doped Ge_(2)Sb_(2)Te_(5)film possesses high ten-year data retention temperature of 175℃and low resistance drift coefficient of 0.00024 at 85℃,0.00170 at 120℃,and 0.00249 at 150℃,respectively,owing to the formation of Ge–N,Sb–N,and Te–N bonds.The SET/RESET operation speeds of the film reach 520 ps/13 ps.In parallel,the reversible switching cycle of the corresponding device is realized with the resistance ratio of three orders of magnitude.Four-level reversible resistance states induced by various crystallization degrees are also obtained together with low resistance drift coefficients.Therefore,the N-doped Ge_(2)Sb_(2)Te_(5)thin film is a promising phase-change material for ultrafast multilevel optoelectronic hybrid storage.
基金The National Natural Science Foundation of China(No.50805023)the Science and Technology Support Program of Jiangsu Province(No.BE2008081)+1 种基金the Transformation Program of Science and Technology Achievements of Jiangsu Province(No.BA2010093)the Program for Special Talent in Six Fields of Jiangsu Province(No.2008144)
文摘To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is expanded to a multilevel Otsu thresholding algorithm. Secondly a firefly algorithm with opposition-learning OFA is proposed.In the OFA opposite fireflies are generated to increase the diversity of the fireflies and improve the global search ability. Thirdly the OFA is applied to searching multilevel thresholds for image segmentation. Finally the proposed method is implemented to segment the QFN images with defects and the results are compared with three methods i.e. the exhaustive search method the multilevel Otsu thresholding method based on particle swarm optimization and the multilevel Otsu thresholding method based on the firefly algorithm. Experimental results show that the proposed method can segment QFN surface defects images more efficiently and at a greater speed than that of the other three methods.
文摘The various configurations of multilevel inverter involve the use of more numbers of switching devices, energy storage devices and/or unidirectional devices. Each switching unit necessitates the add-on driver circuit for proper functionality. Cascaded H-Bridge Multilevel Inverter requires overlapped switching pulses for the switching devices in positive and negative arms of the bridge which may lead to short circuit during the device failure. This work addresses the problems in different configurations of multilevel inverter by using reduced number of switching and energy storage devices and driver circuits. In the present approach Single Switch is used for each stair case positive output and single H-Bridge for phase reversal. Driver circuits are reduced by using the property of body diode of the MOSFET. Switching pulses are generated by Arduino Development Board. The circuit is simulated using Matlab. More so, through experimental means, it is physically tested and results are analyzed for the 5-step inverter and thereby simulation is fully validated. Consequently, cycloconverter operation of the circuit is simulated using Matlab. Moreover, half bridge configuration of the multilevel inverter is also analyzed for high frequency induction heating applications.
文摘In the multilevel thresholding segmentation of the image, the classification number is always given by the supervisor. To solve this problem, a fast multilevel thresholding algorithm considering both the threshold value and the classification number is proposed based on the maximum entropy, and the self-adaptive criterion of the classification number is given. The algorithm can obtain thresholds and automatically decide the classification number. Experimental results show that the algorithm is effective.
基金Supported by Special Research Fund for Public Sector(Agriculture)(200903055)~~
文摘[Objective] The study was to explore the major factors affecting diary cattle brucellosis risk assessment,as well as their strong-to-weak sequence,so as to provide theoretical basis for assessing diary cattle brucellosis risk level in different regions.[Method] From 4 dimensions of feeding and importing,breeding,housing and polyculture situation,an evaluation index system was set up,and diary cattle brucellosis risk survey was conducted in 3 typical regions.Finally,systematic multilevel grey relation entropy method was applied to perform data analysis.[Result] The strong-to-weak sequence of Level 1 impact factor of diary cattle brucellosis was as follows:feeding and importinghousingpolyculture situationbreeding;the sequence of Level 2 impact factor was U32〉U12〉U11〉U31〉U21〉U42〉U43〉U23〉U22〉U41;the risk level sequence of 3 typical regions was Province A(County A1,A2,A3)Province B(County B1,B2,B3)Province C(County C1,C2,C3).[Conclusion] According to the weight of Level 1 index strata,administrative departments at all levels and dairy cattle farmers should lay emphasis on the aspects of feeding,importing and housing;viewed from the perspective of Level 2 index strata,dairy cattle farmers should value the siting of cattle field,the brucellosis surveillance before importing and milking modes most.According to the diary cattle brucellosis risk level of 3 typical regions,if administrative departments at all levels strengthen peoples' awareness of their personal health and increase investment in this area,with new healthy cultured atmosphere built,the risk level of diary cattle brucellosis will surly decline.
文摘This work presents an implementation of an innovative single phase multilevel inverter using capacitors with reduced switches. The proposed Capacitor pattern H-bridge Multilevel Inverter (CPHMLI) topology consists of a proper number of Capacitor connected with switches and power sources. The advanced switching control supplied by Pulse Width Modulation (PDPWM) to attain mixed staircase switching state. The charging and discharging mode are achieved by calculating the voltage error at the load. Furthermore, to accomplish the higher voltage levels at the output with less number of semiconductors switches and simple commutation designed using CPHMLI topology. To prove the performance and effectiveness of the proposed approach, a set of experiments performed under various load conditions using MATLAB tool.
基金National Basic Research Program of China (2012CB722201)National Natural Science Foundation of China (30970504, 31060320)National Science and Technology Support Program (2011BAC07B01)
文摘Land degradation causes serious environmental problems in many regions of the world, and although it can be effectively assessed and monitored using a time series of rainfall and a normalized difference vegetation index (NDVI) from remotely-sensed imagery, dividing human-induced land degradation from vegetation dynamics due to climate change is not a trivial task. This paper presented a multilevel statistical modeling of the NDVI-rainfall relationship to detect human-induced land degradation at local and landscape scales in the Ordos Plateau of Inner Mongolia, China, and recognized that anthropogenic activities result in either positive (land restoration and re-vegetation) or negative (degradation) trends. Linear regressions were used to assess the accuracy of the multi- level statistical model. The results show that: (1) land restoration was the dominant process in the Ordos Plateau between 1998 and 2012; (2) the effect of the statistical removal of precipitation revealed areas of human-induced land degradation and improvement, the latter reflecting successful restoration projects and changes in land man- agement in many parts of the Ordos; (3) compared to a simple linear regression, multilevel statistical modeling could be used to analyze the relationship between the NDVI and rainfall and improve the accuracy of detecting the effect of human activities. Additional factors should be included when analyzing the NDVI-rainfall relationship and detecting human-induced loss of vegetation cover in drylands to improve the accuracy of the approach and elimi- nate some observed non-significant residual trends.
基金supported by the National Basic Research Program of China (973 Program) (61320)
文摘The method of establishing data structures plays an important role in the efficiency of parallel multilevel fast multipole algorithm(PMLFMA).Considering the main complements of multilevel fast multipole algorithm(MLFMA) memory,a new parallelization strategy and a modified data octree construction scheme are proposed to further reduce communication in order to improve parallel efficiency.For far interaction,a new scheme called dynamic memory allocation is developed.To analyze the workload balancing performance of a parallel implementation,the original concept of workload balancing factor is introduced and verified by numerical examples.Numerical results show that the above measures improve the parallel efficiency and are suitable for the analysis of electrical large-scale scattering objects.
文摘In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding. These new energy based objective criterions are further combined with the proficient search capability of swarm based algorithms to improve the efficiency and robustness. The proposed multilevel thresholding approach accurately determines the optimal threshold values by using generated energy curve, and acutely distinguishes different objects within the multi-channel complex images. The performance evaluation indices and experiments on different test images illustrate that Kapur's entropy aided with differential evolution and bacterial foraging optimization algorithm generates the most accurate and visually pleasing segmented images.
基金supported by the National Natural Science Foundation of China(Nos.11975060,12005026,and 12075038)the Science and Technology Project in Sichuan Province(No.2021JDRC0028).
文摘For nuclear measurements,it is necessary to obtain accurate information from nuclear pulses,which should be obtained by first shaping the pulses outputted by the detectors.However,commonly used pulse-shaping algorithms have certain problems.For example,certain pulse-shaping algorithms have long dead-times in high-counting-rate environments or are difficult to achieve in digital systems.Gaussian signals are widely used in analog nuclear instruments owing to their symmetry and completeness.A Gaussian signal is usually implemented by using a multilevel S–K filter in series or in parallel.It is difficult to construct a real-time digital Gaussian filter for the complex Gaussian filtering algorithm.Based on the multilevel cascade convolution,a pulse-shaping algorithm for double exponential signals is proposed in this study,which,in addition to double exponential signals,allows more complex output signal models to be used in the new algorithm.The proposed algorithm can be used in high-counting-rate environments and has been implemented in an FPGA with fewer multipliers than those required in other traditional Gaussian pulse-shaping algorithms.The offline processing results indicated that the average peak base width of the output-shaped pulses obtained using the proposed algorithm was reduced compared with that obtained using the traditional Gaussian pulse-shaping algorithm.Experimental results also demonstrated that signal-to-noise ratios and energy resolutions were improved,particularly for pulses with a low energy.The energy resolution was improved by 0.1–0.2%while improving the counting rate.
基金support through PetroChina New-generation Reservoir Simulation Software (2011A-1010)the Program of Research on Continental Sedimentary Oil Reservoir Simulation (z121100004912001)+7 种基金founded by Beijing Municipal Science & Technology Commission and PetroChina Joint Research Funding12HT1050002654partially supported by the NSFC Grant 11201398Hunan Provincial Natural Science Foundation of China Grant 14JJ2063Specialized Research Fund for the Doctoral Program of Higher Education of China Grant 20124301110003partially supported by the Dean’s Startup Fund, Academy of Mathematics and System Sciences and the State High Tech Development Plan of China (863 Program 2012AA01A309partially supported by NSFC Grant 91130002Program for Changjiang Scholars and Innovative Research Team in University of China Grant IRT1179the Scientific Research Fund of the Hunan Provincial Education Department of China Grant 12A138
文摘As a result of the interplay between advances in computer hardware, software, and algorithm, we are now in a new era of large-scale reservoir simulation, which focuses on accurate flow description, fine reservoir characterization, efficient nonlinear/linear solvers, and parallel implementation. In this paper, we discuss a multilevel preconditioner in a new-generation simulator and its implementation on multicore computers. This preconditioner relies on the method of subspace corrections to solve large-scale linear systems arising from fully implicit methods in reservoir simulations. We investigate the parallel efficiency and robustness of the proposed method by applying it to million-cell benchmark problems.
文摘Objective:To investigate a novel surgical method for multilevel cervical spondylotic myelopathy (CSM). Methods: Totally 21 patients with multilevel CSM undergoing a novel surgical procedure from April 2001 to January 2004 were analyzed retrospectively. All patients experienced anterior cervical decompression surgery in subsection, autograft fusion and internal fixation. Preoperative, immediate postoperative and follow-up image data, X-rays and semi-quantitative Japanese orthopaedics association (JOA) scores were used to evaluate the restoration of lordosis (Cobb's angle), intervertebral heights, the stability of the cervical spine and the improvement of neurological impairment. Results: Preoperative symptoms were markedly alleviated or disappeared in most of the patients. According to the JOA scores, the ratio of improvement in neurological function was 72. 2%, including excellent in 9 cases (42.9%), good in 7 cases (33.3%), fair in 3 cases (14.3%) and poor in 2 cases (9.5%). Immediate postoperative X-rays showed obvious improvements in lordosis and in the intervertebral height of the cervical spine (P〈0. 01). There is no evidence of instrument failure during the mean follow-up period of 14. 2 months (9-24 months, P〉0. 01). Conclusion:Anterior cervical decompression in subsection, autograft fusion and internal fixation is a rational effective method for the surgical treatment of multilevel CSM.