期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
遥感图像云检测的多尺度融合分割网络方法
被引量:
15
1
作者
郭玥
于希明
+1 位作者
王少军
彭宇
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2019年第6期31-38,共8页
在进行可见光遥感图像高精度云检测时,云自身特征的多变性,以及地物与云之间的特征相似性,会降低检测精度。因此,提出一种带权重的多尺度融合分割网络云检测方法。首先,通过有云区域和无云区域的特征学习,降低对云状的敏感性,同时利用...
在进行可见光遥感图像高精度云检测时,云自身特征的多变性,以及地物与云之间的特征相似性,会降低检测精度。因此,提出一种带权重的多尺度融合分割网络云检测方法。首先,通过有云区域和无云区域的特征学习,降低对云状的敏感性,同时利用全卷积网络进行端到端训练,实现对每个像素点分类。该方法能够自动提取深层特征,并可将云的深层语义特征与浅层细节特征结合,不但有利于区分下垫面中与云特征相似的地物,还可提高云边缘检测效果,从而提升云量值的检测精度。与其他深度学习分割网络的实验比较分析表明,所提方法可以实现95. 39%的像素分类准确度,云量值检测误差优于1%,为解决遥感图像云污染问题提供了新的思路。
展开更多
关键词
云检测
图像分割
卷积网络
多尺度融合
下载PDF
职称材料
题名
遥感图像云检测的多尺度融合分割网络方法
被引量:
15
1
作者
郭玥
于希明
王少军
彭宇
机构
哈尔滨工业大学测控工程系
出处
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2019年第6期31-38,共8页
基金
国家自然科学基金(61571160)项目资助
文摘
在进行可见光遥感图像高精度云检测时,云自身特征的多变性,以及地物与云之间的特征相似性,会降低检测精度。因此,提出一种带权重的多尺度融合分割网络云检测方法。首先,通过有云区域和无云区域的特征学习,降低对云状的敏感性,同时利用全卷积网络进行端到端训练,实现对每个像素点分类。该方法能够自动提取深层特征,并可将云的深层语义特征与浅层细节特征结合,不但有利于区分下垫面中与云特征相似的地物,还可提高云边缘检测效果,从而提升云量值的检测精度。与其他深度学习分割网络的实验比较分析表明,所提方法可以实现95. 39%的像素分类准确度,云量值检测误差优于1%,为解决遥感图像云污染问题提供了新的思路。
关键词
云检测
图像分割
卷积网络
多尺度融合
Keywords
cloud detection
image segmentation
convolutional network
multilevel scale fusion
分类号
TP751 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
遥感图像云检测的多尺度融合分割网络方法
郭玥
于希明
王少军
彭宇
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2019
15
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部