Using the energy-based Hamiltonian function method, this paper investigates the decentralized robust nonlinear control of multiple static var compensators (SVCs) in multimachine multiload power systems. First, the u...Using the energy-based Hamiltonian function method, this paper investigates the decentralized robust nonlinear control of multiple static var compensators (SVCs) in multimachine multiload power systems. First, the uncertain nonlinear differential algebraic equation model is constructed for the power system. Then, the dissipative Hamiltonian realization of the system is completed by means of variable transformation and prefeedback control. Finally, based on the obtained dissipative Hamiltonian realization, a decentralized robust nonlinear controller is put forward. The proposed controller can effectively utilize the internal structure and the energy balance property of the power system. Simulation results verify the effectiveness of the control scheme.展开更多
基金supported by the National Natural Science Foundation of China(Nos.60974005,61104004)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20094101120008)+1 种基金the Natural Science Foundation of Henan Province(No.092300410201)the Science and Technique Research Program of Henan Educational Committee(No.13A520379)
文摘Using the energy-based Hamiltonian function method, this paper investigates the decentralized robust nonlinear control of multiple static var compensators (SVCs) in multimachine multiload power systems. First, the uncertain nonlinear differential algebraic equation model is constructed for the power system. Then, the dissipative Hamiltonian realization of the system is completed by means of variable transformation and prefeedback control. Finally, based on the obtained dissipative Hamiltonian realization, a decentralized robust nonlinear controller is put forward. The proposed controller can effectively utilize the internal structure and the energy balance property of the power system. Simulation results verify the effectiveness of the control scheme.