In medical research and clinical diagnosis, automated or computer-assisted classification and retrieval methods are highly desirable to offset the high cost of manual classification and manipulation by medical experts...In medical research and clinical diagnosis, automated or computer-assisted classification and retrieval methods are highly desirable to offset the high cost of manual classification and manipulation by medical experts. To facilitate the decision-making in the health-care and the related areas, in this paper, a two-step content-based medical image retrieval algorithm is proposed. Firstly, in the preprocessing step, the image segmentation is performed to distinguish image objects, and on the basis of the ...展开更多
<div style="text-align:justify;"> Digital image collection as rapidly increased along with the development of computer network. Image retrieval system was developed purposely to provide an efficient to...<div style="text-align:justify;"> Digital image collection as rapidly increased along with the development of computer network. Image retrieval system was developed purposely to provide an efficient tool for a set of images from a collection of images in the database that matches the user’s requirements in similarity evaluations such as image content similarity, edge, and color similarity. Retrieving images based on the content which is color, texture, and shape is called content based image retrieval (CBIR). The content is actually the feature of an image and these features are extracted and used as the basis for a similarity check between images. The algorithms used to calculate the similarity between extracted features. There are two kinds of content based image retrieval which are general image retrieval and application specific image retrieval. For the general image retrieval, the goal of the query is to obtain images with the same object as the query. Such CBIR imitates web search engines for images rather than for text. For application specific, the purpose tries to match a query image to a collection of images of a specific type such as fingerprints image and x-ray. In this paper, the general architecture, various functional components, and techniques of CBIR system are discussed. CBIR techniques discussed in this paper are categorized as CBIR using color, CBIR using texture, and CBIR using shape features. This paper also describe about the comparison study about color features, texture features, shape features, and combined features (hybrid techniques) in terms of several parameters. The parameters are precision, recall and response time. </div>展开更多
Developments in multimedia technologies have paved way for the storage of huge collections of video doc- uments on computer systems. It is essential to design tools for content-based access to the documents, so as to ...Developments in multimedia technologies have paved way for the storage of huge collections of video doc- uments on computer systems. It is essential to design tools for content-based access to the documents, so as to allow an efficient exploitation of these collections. Content based anal- ysis provides a flexible and powerful way to access video data when compared with the other traditional video analysis tech- niques. The area of content based video indexing and retrieval (CBVIR), focusing on automating the indexing, retrieval and management of video, has attracted extensive research in the last decade. CBVIR is a lively area of research with endur- ing acknowledgments from several domains. Herein a vital assessment of contemporary researches associated with the content-based indexing and retrieval of visual information. In this paper, we present an extensive review of significant researches on CBV1R. Concise description of content based video analysis along with the techniques associated with the content based video indexing and retrieval is presented.展开更多
文摘In medical research and clinical diagnosis, automated or computer-assisted classification and retrieval methods are highly desirable to offset the high cost of manual classification and manipulation by medical experts. To facilitate the decision-making in the health-care and the related areas, in this paper, a two-step content-based medical image retrieval algorithm is proposed. Firstly, in the preprocessing step, the image segmentation is performed to distinguish image objects, and on the basis of the ...
文摘<div style="text-align:justify;"> Digital image collection as rapidly increased along with the development of computer network. Image retrieval system was developed purposely to provide an efficient tool for a set of images from a collection of images in the database that matches the user’s requirements in similarity evaluations such as image content similarity, edge, and color similarity. Retrieving images based on the content which is color, texture, and shape is called content based image retrieval (CBIR). The content is actually the feature of an image and these features are extracted and used as the basis for a similarity check between images. The algorithms used to calculate the similarity between extracted features. There are two kinds of content based image retrieval which are general image retrieval and application specific image retrieval. For the general image retrieval, the goal of the query is to obtain images with the same object as the query. Such CBIR imitates web search engines for images rather than for text. For application specific, the purpose tries to match a query image to a collection of images of a specific type such as fingerprints image and x-ray. In this paper, the general architecture, various functional components, and techniques of CBIR system are discussed. CBIR techniques discussed in this paper are categorized as CBIR using color, CBIR using texture, and CBIR using shape features. This paper also describe about the comparison study about color features, texture features, shape features, and combined features (hybrid techniques) in terms of several parameters. The parameters are precision, recall and response time. </div>
文摘Developments in multimedia technologies have paved way for the storage of huge collections of video doc- uments on computer systems. It is essential to design tools for content-based access to the documents, so as to allow an efficient exploitation of these collections. Content based anal- ysis provides a flexible and powerful way to access video data when compared with the other traditional video analysis tech- niques. The area of content based video indexing and retrieval (CBVIR), focusing on automating the indexing, retrieval and management of video, has attracted extensive research in the last decade. CBVIR is a lively area of research with endur- ing acknowledgments from several domains. Herein a vital assessment of contemporary researches associated with the content-based indexing and retrieval of visual information. In this paper, we present an extensive review of significant researches on CBV1R. Concise description of content based video analysis along with the techniques associated with the content based video indexing and retrieval is presented.