Thunderstorm wind gusts are small in scale,typically occurring within a range of a few kilometers.It is extremely challenging to monitor and forecast thunderstorm wind gusts using only automatic weather stations.There...Thunderstorm wind gusts are small in scale,typically occurring within a range of a few kilometers.It is extremely challenging to monitor and forecast thunderstorm wind gusts using only automatic weather stations.Therefore,it is necessary to establish thunderstorm wind gust identification techniques based on multisource high-resolution observations.This paper introduces a new algorithm,called thunderstorm wind gust identification network(TGNet).It leverages multimodal feature fusion to fuse the temporal and spatial features of thunderstorm wind gust events.The shapelet transform is first used to extract the temporal features of wind speeds from automatic weather stations,which is aimed at distinguishing thunderstorm wind gusts from those caused by synoptic-scale systems or typhoons.Then,the encoder,structured upon the U-shaped network(U-Net)and incorporating recurrent residual convolutional blocks(R2U-Net),is employed to extract the corresponding spatial convective characteristics of satellite,radar,and lightning observations.Finally,by using the multimodal deep fusion module based on multi-head cross-attention,the temporal features of wind speed at each automatic weather station are incorporated into the spatial features to obtain 10-minutely classification of thunderstorm wind gusts.TGNet products have high accuracy,with a critical success index reaching 0.77.Compared with those of U-Net and R2U-Net,the false alarm rate of TGNet products decreases by 31.28%and 24.15%,respectively.The new algorithm provides grid products of thunderstorm wind gusts with a spatial resolution of 0.01°,updated every 10minutes.The results are finer and more accurate,thereby helping to improve the accuracy of operational warnings for thunderstorm wind gusts.展开更多
As social networks become increasingly complex, contemporary fake news often includes textual descriptionsof events accompanied by corresponding images or videos. Fake news in multiple modalities is more likely tocrea...As social networks become increasingly complex, contemporary fake news often includes textual descriptionsof events accompanied by corresponding images or videos. Fake news in multiple modalities is more likely tocreate a misleading perception among users. While early research primarily focused on text-based features forfake news detection mechanisms, there has been relatively limited exploration of learning shared representationsin multimodal (text and visual) contexts. To address these limitations, this paper introduces a multimodal modelfor detecting fake news, which relies on similarity reasoning and adversarial networks. The model employsBidirectional Encoder Representation from Transformers (BERT) and Text Convolutional Neural Network (Text-CNN) for extracting textual features while utilizing the pre-trained Visual Geometry Group 19-layer (VGG-19) toextract visual features. Subsequently, the model establishes similarity representations between the textual featuresextracted by Text-CNN and visual features through similarity learning and reasoning. Finally, these features arefused to enhance the accuracy of fake news detection, and adversarial networks have been employed to investigatethe relationship between fake news and events. This paper validates the proposed model using publicly availablemultimodal datasets from Weibo and Twitter. Experimental results demonstrate that our proposed approachachieves superior performance on Twitter, with an accuracy of 86%, surpassing traditional unimodalmodalmodelsand existing multimodal models. In contrast, the overall better performance of our model on the Weibo datasetsurpasses the benchmark models across multiple metrics. The application of similarity reasoning and adversarialnetworks in multimodal fake news detection significantly enhances detection effectiveness in this paper. However,current research is limited to the fusion of only text and image modalities. Future research directions should aimto further integrate features fromadditionalmodalities to comprehensively represent themultifaceted informationof fake news.展开更多
Kirsten rat sarcoma viral oncogene homolog(namely KRAS)is a key biomarker for prognostic analysis and targeted therapy of colorectal cancer.Recently,the advancement of machine learning,especially deep learning,has gre...Kirsten rat sarcoma viral oncogene homolog(namely KRAS)is a key biomarker for prognostic analysis and targeted therapy of colorectal cancer.Recently,the advancement of machine learning,especially deep learning,has greatly promoted the development of KRAS mutation detection from tumor phenotype data,such as pathology slides or radiology images.However,there are still two major problems in existing studies:inadequate single-modal feature learning and lack of multimodal phenotypic feature fusion.In this paper,we propose a Disentangled Representation-based Multimodal Fusion framework integrating Pathomics and Radiomics(DRMF-PaRa)for KRAS mutation detection.Specifically,the DRMF-PaRa model consists of three parts:(1)the pathomics learning module,which introduces a tissue-guided Transformer model to extract more comprehensive and targeted pathological features;(2)the radiomics learning module,which captures the generic hand-crafted radiomics features and the task-specific deep radiomics features;(3)the disentangled representation-based multimodal fusion module,which learns factorized subspaces for each modality and provides a holistic view of the two heterogeneous phenotypic features.The proposed model is developed and evaluated on a multi modality dataset of 111 colorectal cancer patients with whole slide images and contrast-enhanced CT.The experimental results demonstrate the superiority of the proposed DRMF-PaRa model with an accuracy of 0.876 and an AUC of 0.865 for KRAS mutation detection.展开更多
Identity-recognition technologies require assistive equipment,whereas they are poor in recognition accuracy and expensive.To overcome this deficiency,this paper proposes several gait feature identification algorithms....Identity-recognition technologies require assistive equipment,whereas they are poor in recognition accuracy and expensive.To overcome this deficiency,this paper proposes several gait feature identification algorithms.First,in combination with the collected gait information of individuals from triaxial accelerometers on smartphones,the collected information is preprocessed,and multimodal fusion is used with the existing standard datasets to yield a multimodal synthetic dataset;then,with the multimodal characteristics of the collected biological gait information,a Convolutional Neural Network based Gait Recognition(CNN-GR)model and the related scheme for the multimodal features are developed;at last,regarding the proposed CNN-GR model and scheme,a unimodal gait feature identity single-gait feature identification algorithm and a multimodal gait feature fusion identity multimodal gait information algorithm are proposed.Experimental results show that the proposed algorithms perform well in recognition accuracy,the confusion matrix,and the kappa statistic,and they have better recognition scores and robustness than the compared algorithms;thus,the proposed algorithm has prominent promise in practice.展开更多
As an emerging research field of brain science,multimodal data fusion analysis has attracted broader attention in the study of complex brain diseases such as Parkinson's disease(PD).However,current studies primari...As an emerging research field of brain science,multimodal data fusion analysis has attracted broader attention in the study of complex brain diseases such as Parkinson's disease(PD).However,current studies primarily lie with detecting the association among different modal data and reducing data attributes.The data mining method after fusion and the overall analysis framework are neglected.In this study,we propose a weighted random forest(WRF)model as the feature screening classifier.The interactions between genes and brain regions are detected as input multimodal fusion features by the correlation analysis method.We implement sample classification and optimal feature selection based on WRF,and construct a multimodal analysis framework for exploring the pathogenic factors of PD.The experimental results in Parkinson's Progression Markers Initiative(PPMI)database show that WRF performs better compared with some advanced methods,and the brain regions and genes related to PD are detected.The fusion of multi-modal data can improve the classification of PD patients and detect the pathogenic factors more comprehensively,which provides a novel perspective for the diagnosis and research of PD.We also show the great potential of WRF to perform the multimodal data fusion analysis of other brain diseases.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3004104)the National Natural Science Foundation of China(Grant No.U2342204)+4 种基金the Innovation and Development Program of the China Meteorological Administration(Grant No.CXFZ2024J001)the Open Research Project of the Key Open Laboratory of Hydrology and Meteorology of the China Meteorological Administration(Grant No.23SWQXZ010)the Science and Technology Plan Project of Zhejiang Province(Grant No.2022C03150)the Open Research Fund Project of Anyang National Climate Observatory(Grant No.AYNCOF202401)the Open Bidding for Selecting the Best Candidates Program(Grant No.CMAJBGS202318)。
文摘Thunderstorm wind gusts are small in scale,typically occurring within a range of a few kilometers.It is extremely challenging to monitor and forecast thunderstorm wind gusts using only automatic weather stations.Therefore,it is necessary to establish thunderstorm wind gust identification techniques based on multisource high-resolution observations.This paper introduces a new algorithm,called thunderstorm wind gust identification network(TGNet).It leverages multimodal feature fusion to fuse the temporal and spatial features of thunderstorm wind gust events.The shapelet transform is first used to extract the temporal features of wind speeds from automatic weather stations,which is aimed at distinguishing thunderstorm wind gusts from those caused by synoptic-scale systems or typhoons.Then,the encoder,structured upon the U-shaped network(U-Net)and incorporating recurrent residual convolutional blocks(R2U-Net),is employed to extract the corresponding spatial convective characteristics of satellite,radar,and lightning observations.Finally,by using the multimodal deep fusion module based on multi-head cross-attention,the temporal features of wind speed at each automatic weather station are incorporated into the spatial features to obtain 10-minutely classification of thunderstorm wind gusts.TGNet products have high accuracy,with a critical success index reaching 0.77.Compared with those of U-Net and R2U-Net,the false alarm rate of TGNet products decreases by 31.28%and 24.15%,respectively.The new algorithm provides grid products of thunderstorm wind gusts with a spatial resolution of 0.01°,updated every 10minutes.The results are finer and more accurate,thereby helping to improve the accuracy of operational warnings for thunderstorm wind gusts.
基金the National Natural Science Foundation of China(No.62302540)with author F.F.S.For more information,please visit their website at https://www.nsfc.gov.cn/.Additionally,it is also funded by the Open Foundation of Henan Key Laboratory of Cyberspace Situation Awareness(No.HNTS2022020)+1 种基金where F.F.S is an author.Further details can be found at http://xt.hnkjt.gov.cn/data/pingtai/.The research is also supported by the Natural Science Foundation of Henan Province Youth Science Fund Project(No.232300420422)for more information,you can visit https://kjt.henan.gov.cn/2022/09-02/2599082.html.Lastly,it receives funding from the Natural Science Foundation of Zhongyuan University of Technology(No.K2023QN018),where F.F.S is an author.You can find more information at https://www.zut.edu.cn/.
文摘As social networks become increasingly complex, contemporary fake news often includes textual descriptionsof events accompanied by corresponding images or videos. Fake news in multiple modalities is more likely tocreate a misleading perception among users. While early research primarily focused on text-based features forfake news detection mechanisms, there has been relatively limited exploration of learning shared representationsin multimodal (text and visual) contexts. To address these limitations, this paper introduces a multimodal modelfor detecting fake news, which relies on similarity reasoning and adversarial networks. The model employsBidirectional Encoder Representation from Transformers (BERT) and Text Convolutional Neural Network (Text-CNN) for extracting textual features while utilizing the pre-trained Visual Geometry Group 19-layer (VGG-19) toextract visual features. Subsequently, the model establishes similarity representations between the textual featuresextracted by Text-CNN and visual features through similarity learning and reasoning. Finally, these features arefused to enhance the accuracy of fake news detection, and adversarial networks have been employed to investigatethe relationship between fake news and events. This paper validates the proposed model using publicly availablemultimodal datasets from Weibo and Twitter. Experimental results demonstrate that our proposed approachachieves superior performance on Twitter, with an accuracy of 86%, surpassing traditional unimodalmodalmodelsand existing multimodal models. In contrast, the overall better performance of our model on the Weibo datasetsurpasses the benchmark models across multiple metrics. The application of similarity reasoning and adversarialnetworks in multimodal fake news detection significantly enhances detection effectiveness in this paper. However,current research is limited to the fusion of only text and image modalities. Future research directions should aimto further integrate features fromadditionalmodalities to comprehensively represent themultifaceted informationof fake news.
基金supported by the National Natural Science Foundation of China(Nos.61932018,32241027,62072441,62272326,62132015,and U22A2037)the Beijing Municipal Administration of Hospitals Incubating Program(No.PX2021013).
文摘Kirsten rat sarcoma viral oncogene homolog(namely KRAS)is a key biomarker for prognostic analysis and targeted therapy of colorectal cancer.Recently,the advancement of machine learning,especially deep learning,has greatly promoted the development of KRAS mutation detection from tumor phenotype data,such as pathology slides or radiology images.However,there are still two major problems in existing studies:inadequate single-modal feature learning and lack of multimodal phenotypic feature fusion.In this paper,we propose a Disentangled Representation-based Multimodal Fusion framework integrating Pathomics and Radiomics(DRMF-PaRa)for KRAS mutation detection.Specifically,the DRMF-PaRa model consists of three parts:(1)the pathomics learning module,which introduces a tissue-guided Transformer model to extract more comprehensive and targeted pathological features;(2)the radiomics learning module,which captures the generic hand-crafted radiomics features and the task-specific deep radiomics features;(3)the disentangled representation-based multimodal fusion module,which learns factorized subspaces for each modality and provides a holistic view of the two heterogeneous phenotypic features.The proposed model is developed and evaluated on a multi modality dataset of 111 colorectal cancer patients with whole slide images and contrast-enhanced CT.The experimental results demonstrate the superiority of the proposed DRMF-PaRa model with an accuracy of 0.876 and an AUC of 0.865 for KRAS mutation detection.
基金supported by the Smart Manufacturing New Model Application Project Ministry of Industry and Information Technology(No.ZH-XZ-18004)Future Research Projects Funds for Science and Technology Department of Jiangsu Province(No.BY2013015-23)+2 种基金the Fundamental Research Funds for the Ministry of Education(No.JUSRP211A 41)the Fundamental Research Funds for the Central Universities(No.JUSRP42003)the 111 Project(No.B2018)。
文摘Identity-recognition technologies require assistive equipment,whereas they are poor in recognition accuracy and expensive.To overcome this deficiency,this paper proposes several gait feature identification algorithms.First,in combination with the collected gait information of individuals from triaxial accelerometers on smartphones,the collected information is preprocessed,and multimodal fusion is used with the existing standard datasets to yield a multimodal synthetic dataset;then,with the multimodal characteristics of the collected biological gait information,a Convolutional Neural Network based Gait Recognition(CNN-GR)model and the related scheme for the multimodal features are developed;at last,regarding the proposed CNN-GR model and scheme,a unimodal gait feature identity single-gait feature identification algorithm and a multimodal gait feature fusion identity multimodal gait information algorithm are proposed.Experimental results show that the proposed algorithms perform well in recognition accuracy,the confusion matrix,and the kappa statistic,and they have better recognition scores and robustness than the compared algorithms;thus,the proposed algorithm has prominent promise in practice.
基金This work was supported by the National Natural Science Foundation of China under Grant No.62072173the Natural Science Foundation of Hunan Province of China under Grant No.2020JJ4432+3 种基金the Key Scientific Research Projects of Department of Education of Hunan Province under Grant No.20A296the Degree and Postgraduate Education Reform Project of Hunan Province under Grant No.2019JGYB091Hunan Provincial Science and Technology Project Foundation under Grant No.2018TP1018,and the InnovationEntrepreneurship Training Program of Hunan Xiangjiang Artificial Intelligence Academy.
文摘As an emerging research field of brain science,multimodal data fusion analysis has attracted broader attention in the study of complex brain diseases such as Parkinson's disease(PD).However,current studies primarily lie with detecting the association among different modal data and reducing data attributes.The data mining method after fusion and the overall analysis framework are neglected.In this study,we propose a weighted random forest(WRF)model as the feature screening classifier.The interactions between genes and brain regions are detected as input multimodal fusion features by the correlation analysis method.We implement sample classification and optimal feature selection based on WRF,and construct a multimodal analysis framework for exploring the pathogenic factors of PD.The experimental results in Parkinson's Progression Markers Initiative(PPMI)database show that WRF performs better compared with some advanced methods,and the brain regions and genes related to PD are detected.The fusion of multi-modal data can improve the classification of PD patients and detect the pathogenic factors more comprehensively,which provides a novel perspective for the diagnosis and research of PD.We also show the great potential of WRF to perform the multimodal data fusion analysis of other brain diseases.