In this paper,we propose a new image fusion algorithm based on two-dimensional Scale-Mixing Complex Wavelet Transform(2D-SMCWT).The fusion of the detail 2D-SMCWT cofficients is performed via a Bayesian Maximum a Poste...In this paper,we propose a new image fusion algorithm based on two-dimensional Scale-Mixing Complex Wavelet Transform(2D-SMCWT).The fusion of the detail 2D-SMCWT cofficients is performed via a Bayesian Maximum a Posteriori(MAP)approach by considering a trivariate statistical model for the local neighboring of 2D-SMCWT coefficients.For the approx imation coefficients,a new fusion rule based on the Principal Component Analysis(PCA)is applied.We conduct several experiments using three different groups of multimodal medical images to evaluate the performance of the proposed method.The obt ained results prove the superiority of the proposed method over the state of the art fusion methods in terms of visual quality and several commonly used metrics.Robustness of the proposed method is further tested against different types of noise.The plots of fusion met rics establish the accuracy of the proposed fusion method.展开更多
Gland cancer is a high-incidence disease that endangers human health,and its early detection and treatment require efficient,accurate,and objective intelligent diagnosis methods.In recent years,the advent of machine l...Gland cancer is a high-incidence disease that endangers human health,and its early detection and treatment require efficient,accurate,and objective intelligent diagnosis methods.In recent years,the advent of machine learning techniques has yielded satisfactory results in intelligent gland cancer diagnosis based on clinical images,significantly improving the accuracy and efficiency of medical image interpretation while reducing the workload of doctors.The focus of this study is to review,classify,and analyze intelligent diagnosis methods for imaging gland cancer based on machine learning and deep learning.This paper briefly introduces some basic imaging principles of multimodal medical images,such as the commonly used computed tomography(CT),magnetic resonance imaging(MRI),ultrasound(US),positron emission tomography(PET),and pathology.In addition,the intelligent diagnosis methods for imaging gland cancer were further classified into supervised learning and weakly supervised learning.Supervised learning consists of traditional machine learning methods,such as K-nearest neighbor algorithm(KNN),support vector machine(SVM),and multilayer perceptron,and deep learning methods evolving from convolutional neural network(CNN).By contrast,weakly supervised learning can be further categorized into active learning,semisupervised learning,and transfer learning.State-of-the-art methods are illustrated with implementation details,including image segmentation,feature extraction,and optimization of classifiers.Their performances are evaluated through indicators,such as accuracy,precision,and sensitivity.In conclusion,the challenges and development trends of intelligent diagnosis methods for imaging gland cancer were addressed and discussed.展开更多
文摘In this paper,we propose a new image fusion algorithm based on two-dimensional Scale-Mixing Complex Wavelet Transform(2D-SMCWT).The fusion of the detail 2D-SMCWT cofficients is performed via a Bayesian Maximum a Posteriori(MAP)approach by considering a trivariate statistical model for the local neighboring of 2D-SMCWT coefficients.For the approx imation coefficients,a new fusion rule based on the Principal Component Analysis(PCA)is applied.We conduct several experiments using three different groups of multimodal medical images to evaluate the performance of the proposed method.The obt ained results prove the superiority of the proposed method over the state of the art fusion methods in terms of visual quality and several commonly used metrics.Robustness of the proposed method is further tested against different types of noise.The plots of fusion met rics establish the accuracy of the proposed fusion method.
基金Supported by National Natural Science Foundation of China(62102036).
文摘Gland cancer is a high-incidence disease that endangers human health,and its early detection and treatment require efficient,accurate,and objective intelligent diagnosis methods.In recent years,the advent of machine learning techniques has yielded satisfactory results in intelligent gland cancer diagnosis based on clinical images,significantly improving the accuracy and efficiency of medical image interpretation while reducing the workload of doctors.The focus of this study is to review,classify,and analyze intelligent diagnosis methods for imaging gland cancer based on machine learning and deep learning.This paper briefly introduces some basic imaging principles of multimodal medical images,such as the commonly used computed tomography(CT),magnetic resonance imaging(MRI),ultrasound(US),positron emission tomography(PET),and pathology.In addition,the intelligent diagnosis methods for imaging gland cancer were further classified into supervised learning and weakly supervised learning.Supervised learning consists of traditional machine learning methods,such as K-nearest neighbor algorithm(KNN),support vector machine(SVM),and multilayer perceptron,and deep learning methods evolving from convolutional neural network(CNN).By contrast,weakly supervised learning can be further categorized into active learning,semisupervised learning,and transfer learning.State-of-the-art methods are illustrated with implementation details,including image segmentation,feature extraction,and optimization of classifiers.Their performances are evaluated through indicators,such as accuracy,precision,and sensitivity.In conclusion,the challenges and development trends of intelligent diagnosis methods for imaging gland cancer were addressed and discussed.