期刊文献+
共找到169篇文章
< 1 2 9 >
每页显示 20 50 100
A New Multiobjective Particle Swarm Optimization Using Local Displacement and Local Guides
1
作者 Saïd Charriffaini Rawhoudine Abdoulhafar Halassi Bacar 《Open Journal of Optimization》 2024年第2期31-49,共19页
This paper introduces a novel variant of particle swarm optimization that leverages local displacements through attractors for addressing multiobjective optimization problems. The method incorporates a square root dis... This paper introduces a novel variant of particle swarm optimization that leverages local displacements through attractors for addressing multiobjective optimization problems. The method incorporates a square root distance mechanism into the external archives to enhance the diversity. We evaluate the performance of the proposed approach on a set of constrained and unconstrained multiobjective test functions, establishing a benchmark for comparison. In order to gauge its effectiveness relative to established techniques, we conduct a comprehensive comparison with well-known approaches such as SMPSO, NSGA2 and SPEA2. The numerical results demonstrate that our method not only achieves efficiency but also exhibits competitiveness when compared to evolutionary algorithms. Particularly noteworthy is its superior performance in terms of convergence and diversification, surpassing the capabilities of its predecessors. 展开更多
关键词 particle swarm optimization multiobjective optimization Attractor-Based Displacement Square Root Distance Crowding Distance
下载PDF
Hybrid particle swarm optimization for multiobjective resource allocation 被引量:4
2
作者 Yi Yang Li Xiaoxing Gu Chunqin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期959-964,共6页
Resource allocation (RA) is the problem of allocating resources among various artifacts or business units to meet one or more expected goals, such a.s maximizing the profits, minimizing the costs, or achieving the b... Resource allocation (RA) is the problem of allocating resources among various artifacts or business units to meet one or more expected goals, such a.s maximizing the profits, minimizing the costs, or achieving the best qualities. A complex multiobjective RA is addressed, and a multiobjective mathematical model is used to find solutions efficiently. Then, all improved particie swarm algorithm (mO_PSO) is proposed combined with a new particle diversity controller policies and dissipation operation. Meanwhile, a modified Pareto methods used in PSO to deal with multiobjectives optimization is presented. The effectiveness of the provided algorithm is validated by its application to some illustrative example dealing with multiobjective RA problems and with the comparative experiment with other algorithm. 展开更多
关键词 resource allocation multiobjective optimization improved particle swarm optimization.
下载PDF
Multiobjective optimal dispatch of microgrid based on analytic hierarchy process and quantum particle swarm optimization 被引量:7
3
作者 Yuxin Zhao Xiaotong Song +1 位作者 Fei Wang Dawei Cui 《Global Energy Interconnection》 CAS 2020年第6期562-570,共9页
Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispat... Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispatch model is developed for a standalone MG composed of wind turbines,photovoltaics,diesel engine unit,load,and battery energy storage system.The economic cost,environmental concerns,and power supply consistency are expressed via subobjectives with varying priorities.Then,the analytic hierarchy process algorithm is employed to reasonably specify the weight coefficients of the subobjectives.The quantum particle swarm optimization algorithm is thereafter employed as a solution to achieve optimal dispatch of the MG.Finally,the validity of the proposed model and solution methodology are con firmed by case studies.This study provides refere nee for mathematical model of multiojective optimizati on of MG and can be widely used in current research field. 展开更多
关键词 Analytic hierarchy process(AHP) Quantum particle swarm optimization(QPSO) multiobjective optimal dispatch Microgrid.
下载PDF
Lifetime prediction for tantalum capacitors with multiple degradation measures and particle swarm optimization based grey model 被引量:2
4
作者 黄姣英 高成 +1 位作者 崔嵬 梅亮 《Journal of Central South University》 SCIE EI CAS 2012年第5期1302-1310,共9页
A lifetime prediction method for high-reliability tantalum (Ta) capacitors was proposed, based on multiple degradation measures and grey model (GM). For analyzing performance degradation data, a two-parameter mode... A lifetime prediction method for high-reliability tantalum (Ta) capacitors was proposed, based on multiple degradation measures and grey model (GM). For analyzing performance degradation data, a two-parameter model based on GM was developed. In order to improve the prediction accuracy of the two-parameter model, parameter selection based on particle swarm optimization (PSO) was used. Then, the new PSO-GM(1, 2, co) optimization model was constructed, which was validated experimentally by conducting an accelerated testing on the Ta capacitors. The experiments were conducted at three different stress levels of 85, 120, and 145℃. The results of two experiments were used in estimating the parameters. And the reliability of the Ta capacitors was estimated at the same stress conditions of the third experiment. The results indicate that the proposed method is valid and accurate. 展开更多
关键词 accelerated degradation test CAPACITOR multiple degradation measure particle swarm optimization grey model
下载PDF
Multiobjective particle swarm inversion algorithm for two-dimensional magnetic data 被引量:8
5
作者 熊杰 张涛 《Applied Geophysics》 SCIE CSCD 2015年第2期127-136,273,共11页
Regularization inversion uses constraints and a regularization factor to solve ill- posed inversion problems in geophysics. The choice of the regularization factor and of the initial model is critical in regularizatio... Regularization inversion uses constraints and a regularization factor to solve ill- posed inversion problems in geophysics. The choice of the regularization factor and of the initial model is critical in regularization inversion. To deal with these problems, we propose a multiobjective particle swarm inversion (MOPSOI) algorithm to simultaneously minimize the data misfit and model constraints, and obtain a multiobjective inversion solution set without the gradient information of the objective function and the regularization factor. We then choose the optimum solution from the solution set based on the trade-off between data misfit and constraints that substitute for the regularization factor. The inversion of synthetic two-dimensional magnetic data suggests that the MOPSOI algorithm can obtain as many feasible solutions as possible; thus, deeper insights of the inversion process can be gained and more reasonable solutions can be obtained by balancing the data misfit and constraints. The proposed MOPSOI algorithm can deal with the problems of choosing the right regularization factor and the initial model. 展开更多
关键词 multiobjective inversion particle swarm optimization regularization factor global search magnetic data
下载PDF
Surrogate-Assisted Particle Swarm Optimization Algorithm With Pareto Active Learning for Expensive Multi-Objective Optimization 被引量:13
6
作者 Zhiming Lv Linqing Wang +2 位作者 Zhongyang Han Jun Zhao Wei Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第3期838-849,共12页
For multi-objective optimization problems, particle swarm optimization(PSO) algorithm generally needs a large number of fitness evaluations to obtain the Pareto optimal solutions. However, it will become substantially... For multi-objective optimization problems, particle swarm optimization(PSO) algorithm generally needs a large number of fitness evaluations to obtain the Pareto optimal solutions. However, it will become substantially time-consuming when handling computationally expensive fitness functions. In order to save the computational cost, a surrogate-assisted PSO with Pareto active learning is proposed. In real physical space(the objective functions are computationally expensive), PSO is used as an optimizer, and its optimization results are used to construct the surrogate models. In virtual space, objective functions are replaced by the cheaper surrogate models, PSO is viewed as a sampler to produce the candidate solutions. To enhance the quality of candidate solutions, a hybrid mutation sampling method based on the simulated evolution is proposed, which combines the advantage of fast convergence of PSO and implements mutation to increase diversity. Furthermore, ε-Pareto active learning(ε-PAL)method is employed to pre-select candidate solutions to guide PSO in the real physical space. However, little work has considered the method of determining parameter ε. Therefore, a greedy search method is presented to determine the value ofεwhere the number of active sampling is employed as the evaluation criteria of classification cost. Experimental studies involving application on a number of benchmark test problems and parameter determination for multi-input multi-output least squares support vector machines(MLSSVM) are given, in which the results demonstrate promising performance of the proposed algorithm compared with other representative multi-objective particle swarm optimization(MOPSO) algorithms. 展开更多
关键词 multiobjective optimization PARETO active learning particle swarm optimization (PSO) surrogate
下载PDF
Rotary unmanned aerial vehicles path planning in rough terrain based on multi-objective particle swarm optimization 被引量:24
7
作者 XU Zhen ZHANG Enze CHEN Qingwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期130-141,共12页
This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,le... This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,length and angle variable rate.First,a three-dimensional(3D)modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs.Considering the length,height and tuning angle of a path,the path planning of R-UAVs is described as a tri-objective optimization problem.Then,an improved multi-objective particle swarm optimization algorithm is developed.To render the algorithm more effective in dealing with this problem,a vibration function is introduced into the collided solutions to improve the algorithm efficiency.Meanwhile,the selection of the global best position is taken into account by the reference point method.Finally,the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine.Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths. 展开更多
关键词 unmanned aerial vehicle(UAV) path planning multiobjective optimization particle swarm optimization
下载PDF
Enhanced Particle Swarm Optimization Based Local Search for Reactive Power Compensation Problem 被引量:1
8
作者 Abd Allah A. Mousa Mohamed A. El-Shorbagy 《Applied Mathematics》 2012年第10期1276-1284,共9页
This paper presents an enhanced Particle Swarm Optimization (PSO) algorithm applied to the reactive power compensation (RPC) problem. It is based on the combination of Genetic Algorithm (GA) and PSO. Our approach inte... This paper presents an enhanced Particle Swarm Optimization (PSO) algorithm applied to the reactive power compensation (RPC) problem. It is based on the combination of Genetic Algorithm (GA) and PSO. Our approach integrates the merits of both genetic algorithms (GAs) and particle swarm optimization (PSO) and it has two characteristic features. Firstly, the algorithm is initialized by a set of a random particle which traveling through the search space, during this travel an evolution of these particles is performed by a hybrid PSO with GA to get approximate no dominated solution. Secondly, to improve the solution quality, dynamic version of pattern search technique is implemented as neighborhood search engine where it intends to explore the less-crowded area in the current archive to possibly obtain more nondominated solutions. The proposed approach is carried out on the standard IEEE 30-bus 6-generator test system. The results demonstrate the capabilities of the proposed approach to generate true and well-distributed Pareto optimal nondominated solutions of the multiobjective RPC. 展开更多
关键词 multiobjective optimization particle swarm optimization Local SEARCH
下载PDF
Feature Selection Using Grey Wolf Optimization with Random Differential Grouping 被引量:1
9
作者 R.S.Latha B.Saravana Balaji +3 位作者 Nebojsa Bacanin Ivana Strumberger Miodrag Zivkovic Milos Kabiljo 《Computer Systems Science & Engineering》 SCIE EI 2022年第10期317-332,共16页
Big data are regarded as a tremendous technology for processing a huge variety of data in a short time and with a large storage capacity.The user’s access over the internet creates massive data processing over the in... Big data are regarded as a tremendous technology for processing a huge variety of data in a short time and with a large storage capacity.The user’s access over the internet creates massive data processing over the internet.Big data require an intelligent feature selection model by addressing huge varieties of data.Traditional feature selection techniques are only applicable to simple data mining.Intelligent techniques are needed in big data processing and machine learning for an efficient classification.Major feature selection algorithms read the input features as they are.Then,the features are preprocessed and classified.Here,an algorithm does not consider the relatedness.During feature selection,all features are misread as outputs.Accordingly,a less optimal solution is achieved.In our proposed research,we focus on the feature selection by using supervised learning techniques called grey wolf optimization(GWO)with decomposed random differential grouping(DrnDG-GWO).First,decomposition of features into subsets based on relatedness in variables is performed.Random differential grouping is performed using a fitness value of two variables.Now,every subset is regarded as a population in GWO techniques.The combination of supervised machine learning with swarm intelligence techniques produces best feature optimization results in this research.Once the features are optimized,we classify using advanced kNN process for accurate data classification.The result of DrnDGGWO is compared with those of the standard GWO and GWO with PSO for feature selection to compare the efficiency of the proposed algorithm.The accuracy and time complexity of the proposed algorithm are 98%and 5 s,which are better than the existing techniques. 展开更多
关键词 Feature selection data optimization supervised learning swarm intelligence decomposed random differential grouping grey wolf optimization
下载PDF
Swarm-Based Extreme Learning Machine Models for Global Optimization
10
作者 Mustafa Abdul Salam Ahmad Taher Azar Rana Hussien 《Computers, Materials & Continua》 SCIE EI 2022年第3期6339-6363,共25页
Extreme Learning Machine(ELM)is popular in batch learning,sequential learning,and progressive learning,due to its speed,easy integration,and generalization ability.While,Traditional ELM cannot train massive data rapid... Extreme Learning Machine(ELM)is popular in batch learning,sequential learning,and progressive learning,due to its speed,easy integration,and generalization ability.While,Traditional ELM cannot train massive data rapidly and efficiently due to its memory residence,high time and space complexity.In ELM,the hidden layer typically necessitates a huge number of nodes.Furthermore,there is no certainty that the arrangement of weights and biases within the hidden layer is optimal.To solve this problem,the traditional ELM has been hybridized with swarm intelligence optimization techniques.This paper displays five proposed hybrid Algorithms“Salp Swarm Algorithm(SSA-ELM),Grasshopper Algorithm(GOA-ELM),Grey Wolf Algorithm(GWO-ELM),Whale optimizationAlgorithm(WOA-ELM)andMoth Flame Optimization(MFO-ELM)”.These five optimizers are hybridized with standard ELM methodology for resolving the tumor type classification using gene expression data.The proposed models applied to the predication of electricity loading data,that describes the energy use of a single residence over a fouryear period.In the hidden layer,Swarm algorithms are used to pick a smaller number of nodes to speed up the execution of ELM.The best weights and preferences were calculated by these algorithms for the hidden layer.Experimental results demonstrated that the proposed MFO-ELM achieved 98.13%accuracy and this is the highest model in accuracy in tumor type classification gene expression data.While in predication,the proposed GOA-ELM achieved 0.397which is least RMSE compared to the other models. 展开更多
关键词 Extreme learning machine salp swarm optimization algorithm grasshopper optimization algorithm grey wolf optimization algorithm moth flame optimization algorithm bio-inspired optimization classification model and whale optimization algorithm
下载PDF
Supply Chain Production-distribution Cost Optimization under Grey Fuzzy Uncertainty
11
作者 刘东波 陈玉娟 +1 位作者 黄道 添玉 《Journal of Donghua University(English Edition)》 EI CAS 2008年第1期41-47,共7页
Most supply chain programming problems are restricted to the deterministic situations or stochastic environmcnts. Considering twofold uncertainty combining grey and fuzzy factors, this paper proposes a hybrid uncertai... Most supply chain programming problems are restricted to the deterministic situations or stochastic environmcnts. Considering twofold uncertainty combining grey and fuzzy factors, this paper proposes a hybrid uncertain programming model to optimize the supply chain production-distribution cost. The programming parameters of the material suppliers, manufacturer, distribution centers, and the customers are integrated into the presented model. On the basis of the chance measure and the credibility of grey fuzzy variable, the grey fuzzy simulation methodology was proposed to generate input-output data for the uncertain functions. The designed neural network can expedite the simulation process after trained from the generated input-output data. The improved Particle Swarm Optimization (PSO) algorithm based on the Differential Evolution (DE) algorithm can optimize the uncertain programming problems. A numerical example was presented to highlight the significance of the uncertain model and the feasibility of the solution strategy. 展开更多
关键词 supply chain optimization grey fuzzy uncertainty neural netwok particle swarm optimization algorithm differential evolution algorithm
下载PDF
Comprehensive Evaluation Method for Traffic Flow Data Quality Based on Grey Correlation Analysis and Particle Swarm Optimization
12
作者 Wei Ba Baojun Chen Qi Li 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2024年第1期106-128,共23页
Nowadays,data are more and more used for intelligent modeling and prediction,and the comprehensive evaluation of data quality is getting more and more attention as a necessary means to measure whether the data are usa... Nowadays,data are more and more used for intelligent modeling and prediction,and the comprehensive evaluation of data quality is getting more and more attention as a necessary means to measure whether the data are usable or not.However,the comprehensive evaluation method of data quality mostly contains the subjective factors of the evaluator,so how to comprehensively and objectively evaluate the data has become a bottleneck that needs to be solved in the research of comprehensive evaluation method.In order to evaluate the data more comprehensively,objectively and differentially,a novel comprehensive evaluation method based on particle swarm optimization(PSO)and grey correlation analysis(GCA)is presented in this paper.At first,an improved GCA evaluation model based on the technique for order preference by similarity to an ideal solution(TOPSIS)is proposed.Then,an objective function model of maximum difference of the comprehensive evaluation values is built,and the PSO algorithm is used to optimize the weights of the improved GCA evaluation model based on the objective function model.Finally,the performance of the proposed method is investigated through parameter analysis.A performance comparison of traffic flow data is carried out,and the simulation results show that the maximum average difference between the evaluation results and its mean value(MDR)of the proposed comprehensive evaluation method is 33.24%higher than that of TOPSIS-GCA,and 6.86%higher than that of GCA.The proposed method has better differentiation than other methods,which means that it objectively and comprehensively evaluates the data from both the relevance and differentiation of the data,and the results more effectively reflect the differences in data quality,which will provide more effective data support for intelligent modeling,prediction and other applications. 展开更多
关键词 Data quality comprehensive evaluation particle swarm optimization grey correlation analysis traffic flow data
原文传递
State of health estimation for lithium-ion battery based on particle swarm optimization algorithm and extreme learning machine
13
作者 Kui Chen Jiali Li +5 位作者 Kai Liu Changshan Bai Jiamin Zhu Guoqiang Gao Guangning Wu Salah Laghrouche 《Green Energy and Intelligent Transportation》 2024年第1期46-54,共9页
Lithium-ion battery State of Health(SOH)estimation is an essential issue in battery management systems.In order to better estimate battery SOH,Extreme Learning Machine(ELM)is used to establish a model to estimate lith... Lithium-ion battery State of Health(SOH)estimation is an essential issue in battery management systems.In order to better estimate battery SOH,Extreme Learning Machine(ELM)is used to establish a model to estimate lithium-ion battery SOH.The Swarm Optimization algorithm(PSO)is used to automatically adjust and optimize the parameters of ELM to improve estimation accuracy.Firstly,collect cyclic aging data of the battery and extract five characteristic quantities related to battery capacity from the battery charging curve and increment capacity curve.Use Grey Relation Analysis(GRA)method to analyze the correlation between battery capacity and five characteristic quantities.Then,an ELM is used to build the capacity estimation model of the lithium-ion battery based on five characteristics,and a PSO is introduced to optimize the parameters of the capacity estimation model.The proposed method is validated by the degradation experiment of the lithium-ion battery under different conditions.The results show that the battery capacity estimation model based on ELM and PSO has better accuracy and stability in capacity estimation,and the average absolute percentage error is less than 1%. 展开更多
关键词 Lithium-ion battery State of health estimation grey relation analysis method particle swarm optimization algorithm Extreme learning machine
原文传递
Fractional derivative multivariable grey model for nonstationary sequence and its application 被引量:4
14
作者 KANG Yuxiao MAO Shuhua +1 位作者 ZHANG Yonghong ZHU Huimin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第5期1009-1018,共10页
Most of the existing multivariable grey models are based on the 1-order derivative and 1-order accumulation, which makes the parameters unable to be adjusted according to the data characteristics of the actual problem... Most of the existing multivariable grey models are based on the 1-order derivative and 1-order accumulation, which makes the parameters unable to be adjusted according to the data characteristics of the actual problems. The results about fractional derivative multivariable grey models are very few at present. In this paper, a multivariable Caputo fractional derivative grey model with convolution integral CFGMC(q, N) is proposed. First, the Caputo fractional difference is used to discretize the model, and the least square method is used to solve the parameters. The orders of accumulations and differential equations are determined by using particle swarm optimization(PSO). Then, the analytical solution of the model is obtained by using the Laplace transform, and the convergence and divergence of series in analytical solutions are also discussed. Finally, the CFGMC(q, N) model is used to predict the municipal solid waste(MSW). Compared with other competition models, the model has the best prediction effect. This study enriches the model form of the multivariable grey model, expands the scope of application, and provides a new idea for the development of fractional derivative grey model. 展开更多
关键词 fractional derivative of Caputo type fractional accumulation generating operation(FAGO) Laplace transform multivariable grey prediction model particle swarm optimization(PSO)
下载PDF
Multidirection Update-Based Multiobjective Particle Swarm Optimization for Mixed No-Idle Flow-Shop Scheduling Problem 被引量:7
15
作者 Wenqiang Zhang Wenlin Hou +2 位作者 Chen Li Weidong Yang Mitsuo Gen 《Complex System Modeling and Simulation》 2021年第3期176-197,共22页
The Mixed No-Idle Flow-shop Scheduling Problem(MNIFSP)is an extension of flow-shop scheduling,which has practical significance and application prospects in production scheduling.To improve the efficacy of solving the ... The Mixed No-Idle Flow-shop Scheduling Problem(MNIFSP)is an extension of flow-shop scheduling,which has practical significance and application prospects in production scheduling.To improve the efficacy of solving the complicated multiobjective MNIFSP,a MultiDirection Update(MDU)based Multiobjective Particle Swarm Optimization(MDU-MoPSO)is proposed in this study.For the biobjective optimization problem of the MNIFSP with minimization of makespan and total processing time,the MDU strategy divides particles into three subgroups according to a hybrid selection mechanism.Each subgroup prefers one convergence direction.Two subgroups are individually close to the two edge areas of the Pareto Front(PF)and serve two objectives,whereas the other one approaches the central area of the PF,preferring the two objectives at the same time.The MDU-MoPSO adopts a job sequence representation method and an exchange sequence-based particle update operation,which can better reflect the characteristics of sequence differences among particles.The MDU-MoPSO updates the particle in multiple directions and interacts in each direction,which speeds up the convergence while maintaining a good distribution performance.The experimental results and comparison of six classical evolutionary algorithms for various benchmark problems demonstrate the effectiveness of the proposed algorithm. 展开更多
关键词 multiobjective optimization particle swarm optimization(PSO) Mixed No-Idle Flow-shop Scheduling Problem(MNLFSP) multidirection update
原文传递
Multiobjective Particle Swarm Optimization Without the Personal Best
16
作者 王英林 徐鹤鸣 《Journal of Shanghai Jiaotong university(Science)》 EI 2014年第2期155-159,共5页
The personal best is an interesting topic, but little work has focused on whether it is still efficient for multiobjective particle swarm optimization. In dealing with single objective optimization problems, a single ... The personal best is an interesting topic, but little work has focused on whether it is still efficient for multiobjective particle swarm optimization. In dealing with single objective optimization problems, a single global best exists, so the personal best provides optimal diversity to prevent premature convergence. But in multiobjective optimization problems, the diversity provided by the personal best is less optimal, whereas the global archive contains a series of global bests, thus provides optimal diversity. If the algorithm excluding the personal best provides sufficient randomness, the personal best becomes worthless. Therefore we propose no personal best strategy that no longer uses the personal best when the global archive exceeds the population size. Experimental results validate the efficiency of our strategy. 展开更多
关键词 multiobjective optimization problems particle swarm optimization(PSO) PERSONAL best GLOBAL best GLOBAL ARCHIVE
原文传递
Energy-Efficient Routing Using Novel Optimization with Tabu Techniques for Wireless Sensor Network
17
作者 Manar Ahmed Hamza Aisha Hassan Abdalla Hashim +5 位作者 Dalia H.Elkamchouchi Nadhem Nemri Jaber S.Alzahrani Amira Sayed A.Aziz Mnahel Ahmed Ibrahim Abdelwahed Motwakel 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1711-1726,共16页
Wireless Sensor Network(WSN)consists of a group of limited energy source sensors that are installed in a particular region to collect data from the environment.Designing the energy-efficient data collection methods in... Wireless Sensor Network(WSN)consists of a group of limited energy source sensors that are installed in a particular region to collect data from the environment.Designing the energy-efficient data collection methods in largescale wireless sensor networks is considered to be a difficult area in the research.Sensor node clustering is a popular approach for WSN.Moreover,the sensor nodes are grouped to form clusters in a cluster-based WSN environment.The battery performance of the sensor nodes is likewise constrained.As a result,the energy efficiency of WSNs is critical.In specific,the energy usage is influenced by the loads on the sensor node as well as it ranges from the Base Station(BS).Therefore,energy efficiency and load balancing are very essential in WSN.In the proposed method,a novel Grey Wolf Improved Particle Swarm Optimization with Tabu Search Techniques(GW-IPSO-TS)was used.The selection of Cluster Heads(CHs)and routing path of every CH from the base station is enhanced by the proposed method.It provides the best routing path and increases the lifetime and energy efficiency of the network.End-to-end delay and packet loss rate have also been improved.The proposed GW-IPSO-TS method enhances the evaluation of alive nodes,dead nodes,network survival index,convergence rate,and standard deviation of sensor nodes.Compared to the existing algorithms,the proposed method outperforms better and improves the lifetime of the network. 展开更多
关键词 Wireless sensor networks ENERGY-EFFICIENT load balancing energy consumption network’s lifetime cluster heads grey wolf optimization tabu search particle swarm optimization
下载PDF
改进灰狼算法优化GBDT在PM_(2.5)预测中的应用 被引量:2
18
作者 江雨燕 傅杰 +2 位作者 甘如美江 孙雨辰 王付宇 《安全与环境学报》 CAS CSCD 北大核心 2024年第4期1569-1580,共12页
针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局... 针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局搜索能力;利用粒子群算法模拟灰狼种群得出的最佳适应度以用于惩罚项改进灰狼算法中的头狼更新策略。使用改进算法优化的梯度提升树(Gradient Boosting Decision Trees,GBDT)模型对北京市大气污染物监测数据中PM_(2.5)质量浓度进行预测,采用3种评估函数对各模型以及混合模型预测效果得分进行评估。结果显示,本文改进的灰狼算法对梯度提升树的优化效果优于其他算法,均方根误差E RMS为6.65μg/m^(3),平均绝对值误差E MA为3.20μg/m^(3),拟合优度(R^(2))为99%,比传统灰狼算法优化结果的均方根误差减少了19.19μg/m^(3),平均绝对值误差降低了10.03μg/m^(3),拟合优度增加了9百分点;与霍尔顿序列和莱维飞行改进的(Levy Flight-Halton Sequence,LHGWO)相比,改进的灰狼算法预测得分的均方根误差降低了10.39μg/m^(3),平均绝对值误差减小了6.71μg/m^(3),拟合优度提高了5百分点。研究表明了预测模型优化的有效性,为未来城市改善空气质量提供了科学依据和技术支持。 展开更多
关键词 环境学 PM_(2.5)质量浓度预测 改进灰狼算法(GWO) 梯度提升树算法(GBDT) 莱维(Levy)飞行 霍尔顿序列(Halton Sequence) 粒子群算法(PSO)
下载PDF
基于粒子群混合灰狼算法的配电网故障恢复策略 被引量:1
19
作者 刘青 董浩然 +1 位作者 胡紫琪 马天祥 《华北电力大学学报(自然科学版)》 CAS 北大核心 2024年第4期47-56,68,共11页
为进一步提高主动配电网在故障恢复过程中的高效性和可靠性,基于粒子群混合灰狼算法对含高比例分布式电源的主动配电网进行故障恢复分析。首先针对配电网故障恢复持续时间长、光伏与风机出力和负荷需求波动大的问题,建立分布式电源时变... 为进一步提高主动配电网在故障恢复过程中的高效性和可靠性,基于粒子群混合灰狼算法对含高比例分布式电源的主动配电网进行故障恢复分析。首先针对配电网故障恢复持续时间长、光伏与风机出力和负荷需求波动大的问题,建立分布式电源时变性和负荷特性模型。以故障时段内分布式电源恢复重要负荷总量最大为目标函数,对配电网进行初步孤岛划分。在初步孤岛划分的基础上综合考虑恢复重要负荷总量最大、网络损耗最小和开关操作次数最少三个目标函数,采用粒子群混合灰狼算法求解,得到孤岛与主网配合的最优故障恢复策略。运用IEEE33节点配电网模型进行仿真验证,结果表明:分布式电源时变性和负荷特性模型具有优越性,基于粒子群混合灰狼算法的主动配电网故障恢复策略能够可靠地恢复供电。 展开更多
关键词 分布式电源 孤岛划分 故障恢复 粒子群算法 灰狼算法
下载PDF
异构边缘云架构下的多任务卸载算法 被引量:1
20
作者 尼俊红 臧云 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第4期800-807,共8页
为在资源有限的终端设备上运行计算密集型与时延敏感型应用,同时降低系统时延和能耗,构建边缘云异构网络模型。本文提出了一种H-PSOGA多任务卸载优化算法,并通过无人机、路边单元、车辆等边缘设备以及边缘云服务器进行多任务计算卸载。... 为在资源有限的终端设备上运行计算密集型与时延敏感型应用,同时降低系统时延和能耗,构建边缘云异构网络模型。本文提出了一种H-PSOGA多任务卸载优化算法,并通过无人机、路边单元、车辆等边缘设备以及边缘云服务器进行多任务计算卸载。该算法以先串行再并行的方式将粒子群和遗传算法结合在一起,通过适应度值排序、种群选择、多点交叉、反向变异等操作,利用遗传算法对粒子群进行优选,弥补粒子群算法早熟收敛、陷入局部最优的缺陷。6种标准测试函数的测试分析以及与基线方案进行仿真对比的结果表明:在用户数较多时,混合优化算法的系统平均开销可降低26%~43%,可以有效提高收敛精度。 展开更多
关键词 移动边缘计算 异构网络 边缘节点 任务卸载 粒子群算法 遗传算法 多目标优化 标准测试函数
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部