In this paper,a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented,focusing on the challenges posed by sea clutter and multipath scattering.The performance...In this paper,a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented,focusing on the challenges posed by sea clutter and multipath scattering.The performance of the radar detection methods under sea clutter,multipath,and combined conditions is categorized and summarized,and future research directions are outlined to enhance radar detection performance for low-altitude targets in maritime environments.展开更多
Beamspace super-resolution methods for elevation estimation in multipath environment has attracted significant attention, especially the beamspace maximum likelihood(BML)algorithm. However, the difference beam is rare...Beamspace super-resolution methods for elevation estimation in multipath environment has attracted significant attention, especially the beamspace maximum likelihood(BML)algorithm. However, the difference beam is rarely used in superresolution methods, especially in low elevation estimation. The target airspace information in the difference beam is different from the target airspace information in the sum beam. And the use of difference beams does not significantly increase the complexity of the system and algorithms. Thus, this paper applies the difference beam to the beamformer to improve the elevation estimation performance of BML algorithm. And the direction and number of beams can be adjusted according to the actual needs. The theoretical target elevation angle root means square error(RMSE) and the computational complexity of the proposed algorithms are analyzed. Finally, computer simulations and real data processing results demonstrate the effectiveness of the proposed algorithms.展开更多
This paper aimed to propose two algorithms,DA-M and RF-M,of reducing the impact of multipath interference(MPI)on intensity modulation direct detection(IM-DD)systems,particularly for four-level pulse amplitude modulati...This paper aimed to propose two algorithms,DA-M and RF-M,of reducing the impact of multipath interference(MPI)on intensity modulation direct detection(IM-DD)systems,particularly for four-level pulse amplitude modulation(PAM4)systems.DA-M reduced the fluctuation by averaging the signal in blocks,RF-M estimated MPI by subtracting the decision value of the corresponding block from the mean value of a signal block,and then generated interference-reduced samples by subtracting the interference signal from the product of the corresponding MPI estimate and then weighting factor.This paper firstly proposed to separate the signal before decision-making into multiple blocks,which significantly reduced the complexity of DA-M and RF-M.Simulation results showed that the MPI noise of 28 GBaud IMDD system under the linewidths of 1e5 Hz,1e6 Hz and 10e6 Hz can be effectively alleviated.展开更多
Currently,distributed routing protocols are constrained by offering a single path between any pair of nodes,thereby limiting the potential throughput and overall network performance.This approach not only restricts th...Currently,distributed routing protocols are constrained by offering a single path between any pair of nodes,thereby limiting the potential throughput and overall network performance.This approach not only restricts the flow of data but also makes the network susceptible to failures in case the primary path is disrupted.In contrast,routing protocols that leverage multiple paths within the network offer a more resilient and efficient solution.Multipath routing,as a fundamental concept,surpasses the limitations of traditional shortest path first protocols.It not only redirects traffic to unused resources,effectively mitigating network congestion,but also ensures load balancing across the network.This optimization significantly improves network utilization and boosts the overall performance,making it a widely recognized efficient method for enhancing network reliability.To further strengthen network resilience against failures,we introduce a routing scheme known as Multiple Nodes with at least Two Choices(MNTC).This innovative approach aims to significantly enhance network availability by providing each node with at least two routing choices.By doing so,it not only reduces the dependency on a single path but also creates redundant paths that can be utilized in case of failures,thereby enhancing the overall resilience of the network.To ensure the optimal placement of nodes,we propose three incremental deployment algorithms.These algorithms carefully select the most suitable set of nodes for deployment,taking into account various factors such as node connectivity,traffic patterns,and network topology.By deployingMNTCon a carefully chosen set of nodes,we can significantly enhance network reliability without the need for a complete overhaul of the existing infrastructure.We have conducted extensive evaluations of MNTC in diverse topological spaces,demonstrating its effectiveness in maintaining high network availability with minimal path stretch.The results are impressive,showing that even when implemented on just 60%of nodes,our incremental deployment method significantly boosts network availability.This underscores the potential of MNTC in enhancing network resilience and performance,making it a viable solution for modern networks facing increasing demands and complexities.The algorithms OSPF,TBFH,DC and LFC perform fast rerouting based on strict conditions,while MNTC is not restricted by these conditions.In five real network topologies,the average network availability ofMNTCis improved by 14.68%,6.28%,4.76%and 2.84%,respectively,compared with OSPF,TBFH,DC and LFC.展开更多
Addressing the challenges of passive Radio Frequency Identification(RFID)indoor localization technology in Non-Line-of-Sight(NLoS)and multipath environments,this paper presents an innovative approach by introducing a ...Addressing the challenges of passive Radio Frequency Identification(RFID)indoor localization technology in Non-Line-of-Sight(NLoS)and multipath environments,this paper presents an innovative approach by introducing a combined technology integrating an improved Kalman Filter with Space Domain Phase Difference of Arrival(SD-PDOA)and Received Signal Strength Indicator(RSSI).This methodology utilizes the distinct channel characteristics in multipath and NLoS contexts to effectively filter out interference and accurately extract localization information,thereby facilitating high precision and stability in passive RFID localization.The efficacy of this approach is demonstrated through detailed simulations and empirical tests conducted on a custom-built experimental platform consisting of passive RFID tags and an R420 reader.The findings are significant:in NLoS conditions,the four-antenna localization system achieved a notable localization accuracy of 0.25 m at a distance of 5 m.In complex multipath environments,this system achieved a localization accuracy of approximately 0.5 m at a distance of 5 m.When compared to conventional passive localization methods,our proposed solution exhibits a substantial improvement in indoor localization accuracy under NLoS and multipath conditions.This research provides a robust and effective technical solution for high-precision passive indoor localization in the Internet of Things(IoT)system,marking a significant advancement in the field.展开更多
Internet of Things(IoT)networks are characterized by a multitude of wireless,interconnected devices that can dynamically join or exit the network without centralized administration or fixed infrastructure for routing....Internet of Things(IoT)networks are characterized by a multitude of wireless,interconnected devices that can dynamically join or exit the network without centralized administration or fixed infrastructure for routing.While multipath routing in IoT networks can improve data transmission reliability and load balancing by establishing multiple paths between source and destination nodes,these networks are susceptible to security threats due to their wireless nature.Traditional security solutions developed for conventional networks are often ill-suited to the unique challenges posed by IoT environments.In response to these challenges,this paper proposes the integration of the Ad hoc On-demand Multipath Distance Vector(AOMDV)routing protocol with a trust model to enhance network performance.Key findings from this research demonstrate the successful fusion of AOMDV with a trust model,resulting in tangible improvements in network performance.The assessment of trustworthiness bolsters both security and routing capabilities in IoT networks.The trust model plays a crucial role in mitigating black hole attacks in IoT networks by evaluating the trustworthiness of nodes and helping in the identification and avoidance of malicious nodes that may act as black holes.Simulation results validate the efficacy of the proposed trust-based routing mechanism in achieving its objectives.Trust plays a pivotal role in decision-making and in the creation of secure distribution systems.By assessing the trustworthiness of nodes,both network security and routing efficiency can be enhanced.The effectiveness of the proposed trust-based routing mechanism is scrutinized through simulations,offering insights into its potential advantages in terms of improved network security and routing performance in the context of the IoT.展开更多
Most GPS positioning errors can be eliminated or removed by the differential technique or the modeling method,but the multipath effect is a special kind of system or gross error,so it is difficult to be simulated or e...Most GPS positioning errors can be eliminated or removed by the differential technique or the modeling method,but the multipath effect is a special kind of system or gross error,so it is difficult to be simulated or eliminated.In order to improve the accuracy of GPS positioning,the single-epoch pseudorange multipath effects at GPS station were calculated,and firstly modeled based on the spherical cap harmonic(SCH),which is the function of satellite longitude and latitude with the robust method.The accuracy of the kinematic point positioning technique was improved by correcting pseudorange observations with the multipath effect calculated by the SCH model,especially in the elevation direction.The spherical cap harmonic can be used to model the pseudorange multipath effect.展开更多
An altemative algorithm for mitigating GPS multipath was presented by integrating unscented Kalman filter (UKF) and wavelet transform with particle filter. Within consideration of particle degeneracy, UKF was taken ...An altemative algorithm for mitigating GPS multipath was presented by integrating unscented Kalman filter (UKF) and wavelet transform with particle filter. Within consideration of particle degeneracy, UKF was taken for drawing particle. To remove the noise from raw data and data processing error, adaptive wavelet filtering with threshold was adopted while data preprocessing and drawing particle. Three algorithms, named EKF-PF, UKF-PF and WM-UKF-PF, were performed for comparison. The proposed WM-UKF-PF algorithm gives better error minimization, and significantly improves performance of multipath mitigation in terms of SNR and coefficient even though it has computation complexity. It is of significance for high-accuracy positioning and non-stationary deformation analysis.展开更多
For orthogonal frequency division multiplexing (OFDM) wireless communication, the system throughput and data rate are usually limited by pilots, especially in a high mobility environment. In this paper, an enhanced it...For orthogonal frequency division multiplexing (OFDM) wireless communication, the system throughput and data rate are usually limited by pilots, especially in a high mobility environment. In this paper, an enhanced iterative joint channel estimation and symbol detection algorithm is proposed to enhance the system throughput and data rate. With lower pilot power, the proposed scheme increases system throughput firstly, and then the channel estimation and symbol detection proceed iteratively within one OFDM symbol to improve the BER performance. In the proposed algorithm, the original channel estimate of each OFDM symbol is based on the channel estimate of the previous OFDM symbol, thus the variation of the mobile channel is traced efficiently, so the number of pilots in the time domain can be reduced greatly. Besides reducing the system overhead, the proposed algorithm is also shown by simulation to give much better BER performance than the conventional iterative algorithm does.展开更多
In order to improve the performance of multipath mitigation in tracking Galileo signals, a new multipath mitigation method named early-late strobe correlator (ELSC) is proposed. By applying the strobe correlator use...In order to improve the performance of multipath mitigation in tracking Galileo signals, a new multipath mitigation method named early-late strobe correlator (ELSC) is proposed. By applying the strobe correlator used widely in global positioning system (GPS) scenarios to Galileo E1 signals, it can be found that the strobe correlator has an undesirable level of performance when the delay of multipath signals is about 0. 5 chip. Combining several strobe correlators, the ELSC can effectively mitigate the multipath effect especially for the multipath signals with the 0. 5 chip delay. The multipath error envelopes between the strobe correlator and the ELSC are compared for Galileo E1 signals. The simulation results indicate that the ELSC performs excellently on multipath mitigation, and can be applied in both Galileo scenarios and GPS scenarios.展开更多
Several space-time coding based transmit diversity techniques for wideband code division multiple access (WCDMA) systems with four transmitter antennas are investigated. Performances of the rake receivers are analyzed...Several space-time coding based transmit diversity techniques for wideband code division multiple access (WCDMA) systems with four transmitter antennas are investigated. Performances of the rake receivers are analyzed and compared with those of the multi-antenna receive diversity techniques. Theoretical analysis shows that the multi-antenna transmit diversity techniques provide considerable performance gain at the mobile receiver in the wireless channel with less inherent multipath diversity, especially the G4 coding based scheme. Compared with the multi-antenna receive diversity techniques with the same diversity order, the transmit diversity techniques introduce much more multi-access plus multipath interference and require measures of interference suppression in the multi-user environments.展开更多
In order to eliminate the multipath errors existing in static short-baseline applications, a novel de-noising method based on a singular spectrum analysis (named as DSSA) is introduced to extract multipath signals. ...In order to eliminate the multipath errors existing in static short-baseline applications, a novel de-noising method based on a singular spectrum analysis (named as DSSA) is introduced to extract multipath signals. The multipath error is extracted from the double difference (DD) residuals by DSSA and then applied to the correct multipath error in subsequent measurements based on the correlation among adjacent epochs. Methods based on discrete wavelet transform (DWT) and stationary wavelet transform (SWT) are introduced as comparisons of DSSA based on analysis of a simulated signal. Real baseline residuals are tested to verify different extract methods. Results show that compared with the SWT, the DSSA improves the root mean square (RMS) of the residual by 48.6% and achieves a time reduction of 75.3%.展开更多
Today's Internet architecture provides only "best effort" services,thus it cannot guarantee quality of service(QoS) for applications.Software Defined Network(SDN)is a new approach to computer networking ...Today's Internet architecture provides only "best effort" services,thus it cannot guarantee quality of service(QoS) for applications.Software Defined Network(SDN)is a new approach to computer networking that separates control plane and forwarding planes,and has the advantage of centralized control and programmability.In this paper,we propose HiQoS that provides QoS guarantees using SDN.Moreover,HiQoS makes use of multiple paths between source and destination and queuing mechanisms to guarantee QoS for different types of traffic.Experimental results show that our HiQoS scheme can reduce delay and increase throughput to guarantee QoS.Very importantly,HiQoS recovers from link failure very quickly by rerouting traffic from failed path to other available path.展开更多
The physical properties of a reliable acoustic path (RAP) are analysed and subsequently a weighted-subspace~ fitting matched field (WSF-MF) method for passive localization is presented by exploiting the properties...The physical properties of a reliable acoustic path (RAP) are analysed and subsequently a weighted-subspace~ fitting matched field (WSF-MF) method for passive localization is presented by exploiting the properties of the RAP environment. The RAP is an important acoustic duct in the deep ocean, which occurs when the receiver is placed near the bottom where the sound velocity exceeds the maximum sound velocity in the vicinity of the surface. It is found that in the RAP environment the transmission loss is rather low and no blind zone of surveillance exists in a medium range. The ray theory is used to explain these phenomena. Furthermore, the analysis of the arrival structures shows that the source localization method based on arrival angle is feasible in this environment. However, the conventional methods suffer from the complicated and inaccurate estimation of the arrival angle. In this paper, a straightforward WSF-MF method is derived to exploit the information about the arrival angles indirectly. The method is to minimize the distance between the signal subspace and the spanned space by the array manifold in a finite range-depth space rather than the arrival-angle space. Simulations are performed to demonstrate the features of the method, and the results are explained by the arrival structures in the RAP environment.展开更多
Based on ranging intersection theory, a new method which is simple and easy to operate was proposed for data collection in the mine surface deformation monitoring with GPS-RTK centering rod measurements. It can fully ...Based on ranging intersection theory, a new method which is simple and easy to operate was proposed for data collection in the mine surface deformation monitoring with GPS-RTK centering rod measurements. It can fully eliminate the inevitable shaking error and the vertical deflection, and to some extent weaken the multipath effect on the estimates of coordinates in a relatively short period of time, using high-frequency observations. The results show that three-dimensional coordinates with a height accuracy better than 1 cm, horizontal accuracy better than 2-4 cm can be achieved through only 15-30 s continuous observation by 20 Hz high-frequency and effectively improve the measurement accuracy and efficiency of RTK, fully satisfying the high-speed and high-precision data acquisition in mine surface subsidence deformation monitoring.展开更多
It has been proven that carrier smoothing and differential global positioning system (DGPS) are effective to improve the accuracy of pseudorange by reducing the noise in it and eliminating almost all the common mode...It has been proven that carrier smoothing and differential global positioning system (DGPS) are effective to improve the accuracy of pseudorange by reducing the noise in it and eliminating almost all the common mode errors between the ground station and user. However, another issue coming with local area augmentation system (LAAS) is how to find an adaptive smoothing window width to minimize the error on account of ionosphere delay and multipath. Based on the errors analysis in carrier smoothing process, a novel algorithm is formulated to design adaptive Hatch filter whose smoothing window width flexibly varies with the characteristic of ionosphere delay and multipath in the differential carrier smoothing process. By conducting the simulation in LAAS and after compared with traditional Hatch filers, it reveals that not only the accuracy of differential correction, but also the accuracy and the robustness of positioning results are significantly improved by using the designed adaptive Hatch filter.展开更多
A novel algorithm is proposed to solve the poor per- formance problem of the Tent chaos-based frequency modulation (FM) signal for range-Doppler imaging, which takes it into complex multi-segment system by increasin...A novel algorithm is proposed to solve the poor per- formance problem of the Tent chaos-based frequency modulation (FM) signal for range-Doppler imaging, which takes it into complex multi-segment system by increasing its segments. The simulation results show that the effectiveness of the proposed algorithm, as well as the performance of the improved Tent FM signal is obvious in a multipath or noise propagation environment.展开更多
The GPS multipath signal model is presented, which indicates that the coherent DLL outputs in multipath environment are the convolution between the ideal DLL outputs and the channel responses. So the channel responses...The GPS multipath signal model is presented, which indicates that the coherent DLL outputs in multipath environment are the convolution between the ideal DLL outputs and the channel responses. So the channel responses can be estimated by a least square method using the observed curve of the DLL discriminator. In terms of the estimated multipath channels, two multipath mitigation methods are discussed, which are equalization filtering and multipath subtracting, respectively. It is shown, by computer simulation, that the least square method has a good performance in channels estimation and the multipath errors can be mitigated almost completely by either of the methods. However, the multipath subtracting method has relative small remnant errors than equalization filtering.展开更多
基金supported by the National Natural Science Foundation of China(62171447)。
文摘In this paper,a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented,focusing on the challenges posed by sea clutter and multipath scattering.The performance of the radar detection methods under sea clutter,multipath,and combined conditions is categorized and summarized,and future research directions are outlined to enhance radar detection performance for low-altitude targets in maritime environments.
基金supported by the Fund for Foreign Scholars in University Research and Teaching Programs (B18039)。
文摘Beamspace super-resolution methods for elevation estimation in multipath environment has attracted significant attention, especially the beamspace maximum likelihood(BML)algorithm. However, the difference beam is rarely used in superresolution methods, especially in low elevation estimation. The target airspace information in the difference beam is different from the target airspace information in the sum beam. And the use of difference beams does not significantly increase the complexity of the system and algorithms. Thus, this paper applies the difference beam to the beamformer to improve the elevation estimation performance of BML algorithm. And the direction and number of beams can be adjusted according to the actual needs. The theoretical target elevation angle root means square error(RMSE) and the computational complexity of the proposed algorithms are analyzed. Finally, computer simulations and real data processing results demonstrate the effectiveness of the proposed algorithms.
基金supported by the National Key Research and Development Program of China 2021YFB2900801the Young Elite Scientists Sponsorship Program of CIC 2021QNRC001+1 种基金National Natural Science Foundation of China NSFC,62201033,U22A2005the Foundation of the Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services.
文摘This paper aimed to propose two algorithms,DA-M and RF-M,of reducing the impact of multipath interference(MPI)on intensity modulation direct detection(IM-DD)systems,particularly for four-level pulse amplitude modulation(PAM4)systems.DA-M reduced the fluctuation by averaging the signal in blocks,RF-M estimated MPI by subtracting the decision value of the corresponding block from the mean value of a signal block,and then generated interference-reduced samples by subtracting the interference signal from the product of the corresponding MPI estimate and then weighting factor.This paper firstly proposed to separate the signal before decision-making into multiple blocks,which significantly reduced the complexity of DA-M and RF-M.Simulation results showed that the MPI noise of 28 GBaud IMDD system under the linewidths of 1e5 Hz,1e6 Hz and 10e6 Hz can be effectively alleviated.
基金supported by Fundamental Research Program of Shanxi Province(No.20210302123444)the Research Project at the College Level of China Institute of Labor Relations(No.23XYJS018)+2 种基金the ICH Digitalization and Multi-Source Information Fusion Fujian Provincial University Engineering Research Center 2022 Open Fund Project(G3-KF2207)the China University Industry University Research Innovation Fund(No.2021FNA02009)the Key R&D Program(International Science and Technology Cooperation Project)of Shanxi Province China(No.201903D421003).
文摘Currently,distributed routing protocols are constrained by offering a single path between any pair of nodes,thereby limiting the potential throughput and overall network performance.This approach not only restricts the flow of data but also makes the network susceptible to failures in case the primary path is disrupted.In contrast,routing protocols that leverage multiple paths within the network offer a more resilient and efficient solution.Multipath routing,as a fundamental concept,surpasses the limitations of traditional shortest path first protocols.It not only redirects traffic to unused resources,effectively mitigating network congestion,but also ensures load balancing across the network.This optimization significantly improves network utilization and boosts the overall performance,making it a widely recognized efficient method for enhancing network reliability.To further strengthen network resilience against failures,we introduce a routing scheme known as Multiple Nodes with at least Two Choices(MNTC).This innovative approach aims to significantly enhance network availability by providing each node with at least two routing choices.By doing so,it not only reduces the dependency on a single path but also creates redundant paths that can be utilized in case of failures,thereby enhancing the overall resilience of the network.To ensure the optimal placement of nodes,we propose three incremental deployment algorithms.These algorithms carefully select the most suitable set of nodes for deployment,taking into account various factors such as node connectivity,traffic patterns,and network topology.By deployingMNTCon a carefully chosen set of nodes,we can significantly enhance network reliability without the need for a complete overhaul of the existing infrastructure.We have conducted extensive evaluations of MNTC in diverse topological spaces,demonstrating its effectiveness in maintaining high network availability with minimal path stretch.The results are impressive,showing that even when implemented on just 60%of nodes,our incremental deployment method significantly boosts network availability.This underscores the potential of MNTC in enhancing network resilience and performance,making it a viable solution for modern networks facing increasing demands and complexities.The algorithms OSPF,TBFH,DC and LFC perform fast rerouting based on strict conditions,while MNTC is not restricted by these conditions.In five real network topologies,the average network availability ofMNTCis improved by 14.68%,6.28%,4.76%and 2.84%,respectively,compared with OSPF,TBFH,DC and LFC.
基金supported in part by the Joint Project of National Natural Science Foundation of China(U22B2004,62371106)in part by China Mobile Research Institute&X-NET(Project Number:2022H002)+6 种基金in part by the Pre-Research Project(31513070501)in part by National Key R&D Program(2018AAA0103203)in part by Guangdong Provincial Research and Development Plan in Key Areas(2019B010141001)in part by Sichuan Provincial Science and Technology Planning Program of China(2022YFG0230,2023YFG0040)in part by the Fundamental Enhancement Program Technology Area Fund(2021-JCJQ-JJ-0667)in part by the Joint Fund of ZF and Ministry of Education(8091B022126)in part by Innovation Ability Construction Project for Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT(2303-510109-04-03-318020).
文摘Addressing the challenges of passive Radio Frequency Identification(RFID)indoor localization technology in Non-Line-of-Sight(NLoS)and multipath environments,this paper presents an innovative approach by introducing a combined technology integrating an improved Kalman Filter with Space Domain Phase Difference of Arrival(SD-PDOA)and Received Signal Strength Indicator(RSSI).This methodology utilizes the distinct channel characteristics in multipath and NLoS contexts to effectively filter out interference and accurately extract localization information,thereby facilitating high precision and stability in passive RFID localization.The efficacy of this approach is demonstrated through detailed simulations and empirical tests conducted on a custom-built experimental platform consisting of passive RFID tags and an R420 reader.The findings are significant:in NLoS conditions,the four-antenna localization system achieved a notable localization accuracy of 0.25 m at a distance of 5 m.In complex multipath environments,this system achieved a localization accuracy of approximately 0.5 m at a distance of 5 m.When compared to conventional passive localization methods,our proposed solution exhibits a substantial improvement in indoor localization accuracy under NLoS and multipath conditions.This research provides a robust and effective technical solution for high-precision passive indoor localization in the Internet of Things(IoT)system,marking a significant advancement in the field.
文摘Internet of Things(IoT)networks are characterized by a multitude of wireless,interconnected devices that can dynamically join or exit the network without centralized administration or fixed infrastructure for routing.While multipath routing in IoT networks can improve data transmission reliability and load balancing by establishing multiple paths between source and destination nodes,these networks are susceptible to security threats due to their wireless nature.Traditional security solutions developed for conventional networks are often ill-suited to the unique challenges posed by IoT environments.In response to these challenges,this paper proposes the integration of the Ad hoc On-demand Multipath Distance Vector(AOMDV)routing protocol with a trust model to enhance network performance.Key findings from this research demonstrate the successful fusion of AOMDV with a trust model,resulting in tangible improvements in network performance.The assessment of trustworthiness bolsters both security and routing capabilities in IoT networks.The trust model plays a crucial role in mitigating black hole attacks in IoT networks by evaluating the trustworthiness of nodes and helping in the identification and avoidance of malicious nodes that may act as black holes.Simulation results validate the efficacy of the proposed trust-based routing mechanism in achieving its objectives.Trust plays a pivotal role in decision-making and in the creation of secure distribution systems.By assessing the trustworthiness of nodes,both network security and routing efficiency can be enhanced.The effectiveness of the proposed trust-based routing mechanism is scrutinized through simulations,offering insights into its potential advantages in terms of improved network security and routing performance in the context of the IoT.
基金Project (41374009) supported by the National Natural Science Foundation of ChinaProjects (TJES1101,TJES1203) supported by the Key Laboratory of Advanced Engineering Surveying of NASMG,China+1 种基金Project (ZR2013DM009) supported by the Shandong Natural Science Foundation of ChinaProject (201412001) supported by the Public Benefit Scientific Research Project of China
文摘Most GPS positioning errors can be eliminated or removed by the differential technique or the modeling method,but the multipath effect is a special kind of system or gross error,so it is difficult to be simulated or eliminated.In order to improve the accuracy of GPS positioning,the single-epoch pseudorange multipath effects at GPS station were calculated,and firstly modeled based on the spherical cap harmonic(SCH),which is the function of satellite longitude and latitude with the robust method.The accuracy of the kinematic point positioning technique was improved by correcting pseudorange observations with the multipath effect calculated by the SCH model,especially in the elevation direction.The spherical cap harmonic can be used to model the pseudorange multipath effect.
基金Project(51174206)supported by the National Natural Science Foundation of ChinaProject(2013AA12A201)supported by the National Hi-tech Research and Development Program of China+1 种基金Project(2012ZDP08)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(SZBF2011-6-B35)supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘An altemative algorithm for mitigating GPS multipath was presented by integrating unscented Kalman filter (UKF) and wavelet transform with particle filter. Within consideration of particle degeneracy, UKF was taken for drawing particle. To remove the noise from raw data and data processing error, adaptive wavelet filtering with threshold was adopted while data preprocessing and drawing particle. Three algorithms, named EKF-PF, UKF-PF and WM-UKF-PF, were performed for comparison. The proposed WM-UKF-PF algorithm gives better error minimization, and significantly improves performance of multipath mitigation in terms of SNR and coefficient even though it has computation complexity. It is of significance for high-accuracy positioning and non-stationary deformation analysis.
文摘For orthogonal frequency division multiplexing (OFDM) wireless communication, the system throughput and data rate are usually limited by pilots, especially in a high mobility environment. In this paper, an enhanced iterative joint channel estimation and symbol detection algorithm is proposed to enhance the system throughput and data rate. With lower pilot power, the proposed scheme increases system throughput firstly, and then the channel estimation and symbol detection proceed iteratively within one OFDM symbol to improve the BER performance. In the proposed algorithm, the original channel estimate of each OFDM symbol is based on the channel estimate of the previous OFDM symbol, thus the variation of the mobile channel is traced efficiently, so the number of pilots in the time domain can be reduced greatly. Besides reducing the system overhead, the proposed algorithm is also shown by simulation to give much better BER performance than the conventional iterative algorithm does.
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2008BAJ11B05)
文摘In order to improve the performance of multipath mitigation in tracking Galileo signals, a new multipath mitigation method named early-late strobe correlator (ELSC) is proposed. By applying the strobe correlator used widely in global positioning system (GPS) scenarios to Galileo E1 signals, it can be found that the strobe correlator has an undesirable level of performance when the delay of multipath signals is about 0. 5 chip. Combining several strobe correlators, the ELSC can effectively mitigate the multipath effect especially for the multipath signals with the 0. 5 chip delay. The multipath error envelopes between the strobe correlator and the ELSC are compared for Galileo E1 signals. The simulation results indicate that the ELSC performs excellently on multipath mitigation, and can be applied in both Galileo scenarios and GPS scenarios.
基金TheNationalNaturalScienceFoundationofChina (No .60 3 90 5 40 ) .
文摘Several space-time coding based transmit diversity techniques for wideband code division multiple access (WCDMA) systems with four transmitter antennas are investigated. Performances of the rake receivers are analyzed and compared with those of the multi-antenna receive diversity techniques. Theoretical analysis shows that the multi-antenna transmit diversity techniques provide considerable performance gain at the mobile receiver in the wireless channel with less inherent multipath diversity, especially the G4 coding based scheme. Compared with the multi-antenna receive diversity techniques with the same diversity order, the transmit diversity techniques introduce much more multi-access plus multipath interference and require measures of interference suppression in the multi-user environments.
基金The National Natural Science Foundation of China(No.51375087,50975049)the Ocean Special Funds for Scientific Research on Public Causes(No.201205035-09)
文摘In order to eliminate the multipath errors existing in static short-baseline applications, a novel de-noising method based on a singular spectrum analysis (named as DSSA) is introduced to extract multipath signals. The multipath error is extracted from the double difference (DD) residuals by DSSA and then applied to the correct multipath error in subsequent measurements based on the correlation among adjacent epochs. Methods based on discrete wavelet transform (DWT) and stationary wavelet transform (SWT) are introduced as comparisons of DSSA based on analysis of a simulated signal. Real baseline residuals are tested to verify different extract methods. Results show that compared with the SWT, the DSSA improves the root mean square (RMS) of the residual by 48.6% and achieves a time reduction of 75.3%.
基金supported partly by NSFC(National Natural Science Foundation of China)under grant No.61371191 and No.61472389
文摘Today's Internet architecture provides only "best effort" services,thus it cannot guarantee quality of service(QoS) for applications.Software Defined Network(SDN)is a new approach to computer networking that separates control plane and forwarding planes,and has the advantage of centralized control and programmability.In this paper,we propose HiQoS that provides QoS guarantees using SDN.Moreover,HiQoS makes use of multiple paths between source and destination and queuing mechanisms to guarantee QoS for different types of traffic.Experimental results show that our HiQoS scheme can reduce delay and increase throughput to guarantee QoS.Very importantly,HiQoS recovers from link failure very quickly by rerouting traffic from failed path to other available path.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174235 and 61101192)the Science and Technology Development Project of Shaanxi Province,China(Grant No.2010KJXX-02)+2 种基金the Program for New Century Excellent Talents in University,China(Grant No.NCET-08-0455)the Foundation of State Key Lab of Acoustics,China(Grant No.SKLOA201101)the Doctorate Foundation of Northwestern Polytechnical University,China(Grant No.CX201226)
文摘The physical properties of a reliable acoustic path (RAP) are analysed and subsequently a weighted-subspace~ fitting matched field (WSF-MF) method for passive localization is presented by exploiting the properties of the RAP environment. The RAP is an important acoustic duct in the deep ocean, which occurs when the receiver is placed near the bottom where the sound velocity exceeds the maximum sound velocity in the vicinity of the surface. It is found that in the RAP environment the transmission loss is rather low and no blind zone of surveillance exists in a medium range. The ray theory is used to explain these phenomena. Furthermore, the analysis of the arrival structures shows that the source localization method based on arrival angle is feasible in this environment. However, the conventional methods suffer from the complicated and inaccurate estimation of the arrival angle. In this paper, a straightforward WSF-MF method is derived to exploit the information about the arrival angles indirectly. The method is to minimize the distance between the signal subspace and the spanned space by the array manifold in a finite range-depth space rather than the arrival-angle space. Simulations are performed to demonstrate the features of the method, and the results are explained by the arrival structures in the RAP environment.
基金Projects(41074010,40904004)supported by National Natural Science Foundation of ChinaProject(LEDM2010B12)supported by the Scientific Research Foundation of Key Laboratory for Land Environment and Disaster Monitoring of SBSM,China
文摘Based on ranging intersection theory, a new method which is simple and easy to operate was proposed for data collection in the mine surface deformation monitoring with GPS-RTK centering rod measurements. It can fully eliminate the inevitable shaking error and the vertical deflection, and to some extent weaken the multipath effect on the estimates of coordinates in a relatively short period of time, using high-frequency observations. The results show that three-dimensional coordinates with a height accuracy better than 1 cm, horizontal accuracy better than 2-4 cm can be achieved through only 15-30 s continuous observation by 20 Hz high-frequency and effectively improve the measurement accuracy and efficiency of RTK, fully satisfying the high-speed and high-precision data acquisition in mine surface subsidence deformation monitoring.
基金supported by the National Natural Science Foundationof China (60974104)the National Defense Technical Foundation of Shipbuilding Industry (08J3.8.8)
文摘It has been proven that carrier smoothing and differential global positioning system (DGPS) are effective to improve the accuracy of pseudorange by reducing the noise in it and eliminating almost all the common mode errors between the ground station and user. However, another issue coming with local area augmentation system (LAAS) is how to find an adaptive smoothing window width to minimize the error on account of ionosphere delay and multipath. Based on the errors analysis in carrier smoothing process, a novel algorithm is formulated to design adaptive Hatch filter whose smoothing window width flexibly varies with the characteristic of ionosphere delay and multipath in the differential carrier smoothing process. By conducting the simulation in LAAS and after compared with traditional Hatch filers, it reveals that not only the accuracy of differential correction, but also the accuracy and the robustness of positioning results are significantly improved by using the designed adaptive Hatch filter.
基金supported by the National Natural Science Foundation of China (610320106110117211076006)
文摘A novel algorithm is proposed to solve the poor per- formance problem of the Tent chaos-based frequency modulation (FM) signal for range-Doppler imaging, which takes it into complex multi-segment system by increasing its segments. The simulation results show that the effectiveness of the proposed algorithm, as well as the performance of the improved Tent FM signal is obvious in a multipath or noise propagation environment.
文摘The GPS multipath signal model is presented, which indicates that the coherent DLL outputs in multipath environment are the convolution between the ideal DLL outputs and the channel responses. So the channel responses can be estimated by a least square method using the observed curve of the DLL discriminator. In terms of the estimated multipath channels, two multipath mitigation methods are discussed, which are equalization filtering and multipath subtracting, respectively. It is shown, by computer simulation, that the least square method has a good performance in channels estimation and the multipath errors can be mitigated almost completely by either of the methods. However, the multipath subtracting method has relative small remnant errors than equalization filtering.