期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multiphase Flow and Thermo-Mechanical Behaviors of Solidifying Shell in Continuous Casting Mold 被引量:1
1
作者 ZHU Miao-yong CAI Zhao-zhen YU Hai-qi 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2013年第3期6-17,共12页
The metallurgical phenomena occurring in the continuous casting mold have a significant influence on the performance and the quality of steel product.The multiphase flow phenomena of molten steel,steel/slag interface ... The metallurgical phenomena occurring in the continuous casting mold have a significant influence on the performance and the quality of steel product.The multiphase flow phenomena of molten steel,steel/slag interface and gas bubbles in the slab continuous casting mold were described by numerical simulation,and the effect of electromagnetic brake(EMBR) and argon gas blowing on the process were investigated.The relationship between wavy fluctuation height near meniscus and the level fluctuation index F,which reflects the situation of mold flux entrapment,was clarified.Moreover,based on a microsegregation model of solute elements in mushy zone with δ/γ transformation and a thermo-mechanical coupling finite element model of shell solidification,the thermal and mechanical behaviors of solidifying shell including the dynamic distribution laws of air gap and mold flux,temperature and stress of shell in slab continuous casting mold were described. 展开更多
关键词 continuous casting mold multiphase flow heat transfer solidification numerical simulation
原文传递
Modeling and simulation of circulating fluidized bed reactors applied to a carbonation/calcination loop 被引量:1
2
作者 Rafael A.Sánchez Hugo A.Jakobsen 《Particuology》 SCIE EI CAS CSCD 2014年第4期116-128,共13页
A fluid dynamic model for a gas-solid circulating fluidized bed (CFB) designed using two coupled riser reactors is developed and implemented numerically with code programmed in Matlab. The fluid dynamic model contai... A fluid dynamic model for a gas-solid circulating fluidized bed (CFB) designed using two coupled riser reactors is developed and implemented numerically with code programmed in Matlab. The fluid dynamic model contains heat and species mass balances to calculate temperatures and compositions for a carbonation/calcination loop process. Because of the high computational costs required to resolve the three-dimensional phenomena, a model representing a trade-offbetween computational time requirements and accuracy is developed. For dynamic processes with a solid flux between the two reactor units that depends on the fluid dynamics of both risers, a dynamic one-dimensional two-fluid model is sufficient. A two-fluid model using the constant particle viscosity closure for the stress term is used for the solid phase, and an algebraic turbulence model is applied to the gas phase. The numerical model implementa- tion is based on the finite volume method with a staggered grid scheme. The exchange of solids between the reactor units constituting the circulating fluidized bed (solid flux) is implemented through additional mass source/sink terms in the continuity equations of the two phases, For model validation, a relevant experimental analysis provided in the literature is reproduced by the numerical simulations, The numerical analysis indicates that sufficient heat integration between the two reactor units is important for the performance of the circulating fluidized bed system, The two-fluid model performs fairly well for this chemical process operated in a CFB designed as two coupled riser reactors. Further analysis and optimization of the solution algorithms and the reactor coupling strategy is warranted. 展开更多
关键词 Chemical reactors Fluidization Mathematical modeling multiphase flow simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部