期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Hybrid Deep Learning-Based Adaptive Multiple Access Schemes Underwater Wireless Networks
1
作者 D.Anitha R.A.Karthika 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2463-2477,共15页
Achieving sound communication systems in Under Water Acoustic(UWA)environment remains challenging for researchers.The communication scheme is complex since these acoustic channels exhibit uneven characteristics such a... Achieving sound communication systems in Under Water Acoustic(UWA)environment remains challenging for researchers.The communication scheme is complex since these acoustic channels exhibit uneven characteristics such as long propagation delay and irregular Doppler shifts.The development of machine and deep learning algorithms has reduced the burden of achieving reli-able and good communication schemes in the underwater acoustic environment.This paper proposes a novel intelligent selection method between the different modulation schemes such as Code Division Multiple Access(CDMA),Time Divi-sion Multiple Access(TDMA),and Orthogonal Frequency Division Multiplexing(OFDM)techniques using the hybrid combination of the convolutional neural net-works(CNN)and ensemble single feedforward layers(SFL).The convolutional neural networks are used for channel feature extraction,and boosted ensembled feedforward layers are used for modulation selection based on the CNN outputs.The extensive experimentation is carried out and compared with other hybrid learning models and conventional methods.Simulation results demonstrate that the performance of the proposed hybrid learning model has achieved nearly 98%accuracy and a 30%increase in BER performance which outperformed the other learning models in achieving the communication schemes under dynamic underwater environments. 展开更多
关键词 Code division multiple access time division multiple access convolutional neural networks feedforward layers
下载PDF
BP网络的Matlab实现及应用研究 被引量:37
2
作者 刘浩 白振兴 《现代电子技术》 2006年第2期49-51,54,共4页
人工神经网络以其具有信息的分布存储、并行处理以及自学习能力等优点,已经在信息处理、模式识别、智能控制及系统建模等领域得到越来越广泛的应用。他的基于误差反向传播算法的多层前馈网络,即BP网络在非线性建模、函数逼近和模式识别... 人工神经网络以其具有信息的分布存储、并行处理以及自学习能力等优点,已经在信息处理、模式识别、智能控制及系统建模等领域得到越来越广泛的应用。他的基于误差反向传播算法的多层前馈网络,即BP网络在非线性建模、函数逼近和模式识别中有广泛的应用,介绍了BP网络的基本原理,分析了Matlab人工神经网络工具箱中有关BP网络的工具函数,并给出了部分重要工具函数的实际应用。 展开更多
关键词 人工神经网络 BP网络 MATLAB 多层前馈网络
下载PDF
基于多ANN模型的复杂系统长时段预报
3
作者 高峰 李人厚 《自动化学报》 EI CSCD 北大核心 1997年第5期678-683,共6页
提出一种多ANN结构的极值聚类训练算法,并将这种方法应用于复杂系统长时段预报.采用这种方法,可以提高长时段预报精度、增强模型的可靠性.以这种模型为基础可以进一步建立基于多ANN模型的复杂系统预测控制.
关键词 复杂系统 ANN模型 时段预报
下载PDF
基于ELM的一类MIMO仿射非线性系统的鲁棒自适应控制 被引量:4
4
作者 李军 乃永强 《控制与决策》 EI CSCD 北大核心 2015年第9期1559-1566,共8页
针对一类多输入多输出(MIMO)仿射非线性动态系统,提出一种基于极限学习机(ELM)的鲁棒自适应神经控制方法.ELM随机确定单隐层前馈网络(SLFNs)的隐含层参数,仅需调整网络的输出权值,能以极快的学习速度获得良好的推广性.在所提出的控制方... 针对一类多输入多输出(MIMO)仿射非线性动态系统,提出一种基于极限学习机(ELM)的鲁棒自适应神经控制方法.ELM随机确定单隐层前馈网络(SLFNs)的隐含层参数,仅需调整网络的输出权值,能以极快的学习速度获得良好的推广性.在所提出的控制方法中,利用ELM逼近系统的未知非线性项,针对ELM网络的权值、逼近误差及外界扰动的未知上界值分别设计参数自适应律,通过Lyapunov稳定性分析可以保证闭环系统所有信号半全局最终一致有界.仿真结果表明了该控制方法的有效性. 展开更多
关键词 鲁棒自适应神经控制 极限学习机 单隐层前馈网络 多输入多输出 仿射非线性系统
原文传递
A new target tracking filter based on deep learning 被引量:1
5
作者 Yaqi CUI You HE +1 位作者 Tiantian TANG Yu LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第5期11-24,共14页
At present,current filters can basically solve the filtering problem in target tracking,but there are still many problems such as too many filtering variants,too many filtering forms,loosely coupled with the target mo... At present,current filters can basically solve the filtering problem in target tracking,but there are still many problems such as too many filtering variants,too many filtering forms,loosely coupled with the target motion model,and so on.To solve the above problems,we carry out crossapplication research of artificial intelligence theory and methods in the field of tracking filters.We firstly analyze the computation graphs of typical a-βand Kalman.Through analysis,it is concluded that a-βand Kalman have the same computation structures analogous to a typical recurrent neural network and can be considered as a kind of recurrent neural network with constrained weights.Then,given this and considering that a recurrent neural network has the recognition capability for target motion patterns,a new filter is developed in a unified neural network architecture and specifically constructed using feedforward neural network,recurrent neural network,and attention mechanism.And the unified tracking filter proposed in this paper can generate three aspects of unity:a unified target motion model,an adaptive filter method,and an overall track filtering framework.Finally,Simulation results show that the proposed filter is effective and useful,of which the overall performance is superior to those of compared filters. 展开更多
关键词 Attention mechanism feedforward neural network Interactive multiple model Recurrent neural network Tracking filter
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部