Normally,in the downlink Network-Coded Multiple Access(NCMA)system,the same power is allocated to different users.However,equal power allocation is unsuitable for some scenarios,such as when user devices have differen...Normally,in the downlink Network-Coded Multiple Access(NCMA)system,the same power is allocated to different users.However,equal power allocation is unsuitable for some scenarios,such as when user devices have different Quality of Service(QoS)requirements.Hence,we study the power allocation in the downlink NCMA system in this paper,and propose a downlink Network-Coded Multiple Access with Diverse Power(NCMA-DP),wherein different amounts of power are allocated to different users.In terms of the Bit Error Rate(BER)of the multi-user decoder,and the number of packets required to correctly decode the message,the performance of the user with more allocated power is greatly improved compared to the Conventional NCMA(NCMA-C).Meanwhile,the performance of the user with less allocated power is still much better than NCMA-C.Furthermore,the overall throughput of NCMA-DP is greatly improved compared to that of NCMA-C.The simulation results demonstrate the remarkable performance of the proposed NCMA-DP.展开更多
The hybrid carrier(HC)system rooted in the carrier fusion concept is gradually garnering attention.In this paper,we study the extended hybrid carrier(EHC)multiple access scheme to ensure reliable wireless communicatio...The hybrid carrier(HC)system rooted in the carrier fusion concept is gradually garnering attention.In this paper,we study the extended hybrid carrier(EHC)multiple access scheme to ensure reliable wireless communication.By employing the EHC modulation,a power layered multiplexing framework is realized,which exhibits enhanced interference suppression capability owing to the more uniform energy distribution design.The implementation method and advantage mechanism are explicated respectively for the uplink and downlink,and the performance analysis under varying channel conditions is provided.In addition,considering the connectivity demand,we explore the non-orthogonal multiple access(NOMA)method of the EHC system and develop the EHC sparse code multiple access scheme.The proposed scheme melds the energy spread superiority of EHC with the access capacity of NOMA,facilitating superior support for massive connectivity in high mobility environments.Simulation results have verified the feasibility and advantages of the proposed scheme.Compared with existing HC multiple access schemes,the proposed scheme exhibits robust bit error rate performance and can better guarantee multiple access performance in complex scenarios of nextgeneration communications.展开更多
In this paper,ambient IoT is used as a typical use case of massive connections for the sixth generation(6G)mobile communications where we derive the performance requirements to facilitate the evaluation of technical s...In this paper,ambient IoT is used as a typical use case of massive connections for the sixth generation(6G)mobile communications where we derive the performance requirements to facilitate the evaluation of technical solutions.A rather complete design of unsourced multiple access is proposed in which two key parts:a compressed sensing module for active user detection,and a sparse interleaver-division multiple access(SIDMA)module are simulated side by side on a same platform at balanced signal to noise ratio(SNR)operating points.With a proper combination of compressed sensing matrix,a convolutional encoder,receiver algorithms,the simulated performance results appear superior to the state-of-the-art benchmark,yet with relatively less complicated processing.展开更多
Formany years,researchers have explored power allocation(PA)algorithms driven bymodels in wireless networks where multiple-user communications with interference are present.Nowadays,data-driven machine learning method...Formany years,researchers have explored power allocation(PA)algorithms driven bymodels in wireless networks where multiple-user communications with interference are present.Nowadays,data-driven machine learning methods have become quite popular in analyzing wireless communication systems,which among them deep reinforcement learning(DRL)has a significant role in solving optimization issues under certain constraints.To this purpose,in this paper,we investigate the PA problem in a k-user multiple access channels(MAC),where k transmitters(e.g.,mobile users)aim to send an independent message to a common receiver(e.g.,base station)through wireless channels.To this end,we first train the deep Q network(DQN)with a deep Q learning(DQL)algorithm over the simulation environment,utilizing offline learning.Then,the DQN will be used with the real data in the online training method for the PA issue by maximizing the sumrate subjected to the source power.Finally,the simulation results indicate that our proposedDQNmethod provides better performance in terms of the sumrate compared with the available DQL training approaches such as fractional programming(FP)and weighted minimum mean squared error(WMMSE).Additionally,by considering different user densities,we show that our proposed DQN outperforms benchmark algorithms,thereby,a good generalization ability is verified over wireless multi-user communication systems.展开更多
Massive machine type communication(m MTC) is one of the key application scenarios for the fifth generation mobile communication(5 G). Grant-free(GF) transmission can reduce the high signaling overhead in m MTC. Non-or...Massive machine type communication(m MTC) is one of the key application scenarios for the fifth generation mobile communication(5 G). Grant-free(GF) transmission can reduce the high signaling overhead in m MTC. Non-orthogonal multiple access(NMA) can support more users for m MTC than orthogonal frequency division multiple access(OFDMA). Applying GF transmission in NMA system becomes an active topic recently. The in-depth study on applying GF transmission in pattern division multiple access(PDMA), a competitive candidate scheme of NMA, is investigated in this paper. The definition, latency and allocation of resource and transmission mechanism for GF-PDMA are discussed in detail. The link-level and system-level evaluations are provided to verify the analysis. The analysis and simulation results demonstrate that the proposed GF-PDMA has lower latency than grant based PDMA(GB-PDMA), possesses strong scalability to confront collision and provides almost 2.15 times gain over GF-OFDMA in terms of supporting the number of active users in the system.展开更多
In recent years, non-orthogonal multiple access(NOMA) has attracted a lot of attention as a novel and promising power-domain us-er multiplexing scheme for Long-Term Evolution(LTE) enhancement and 5G. NOMA is able to c...In recent years, non-orthogonal multiple access(NOMA) has attracted a lot of attention as a novel and promising power-domain us-er multiplexing scheme for Long-Term Evolution(LTE) enhancement and 5G. NOMA is able to contribute to the improvement ofthe tradeoff between system capacity and user fairness(i.e., cell-edge user experience). This improvement becomes in particularemphasized in a cellular system where the channel conditions vary significantly among users due to the near-far effect. In this arti-cle, we provide an overview of the concept, design and performance of NOMA. In addition, we review the potential benefits and is-sues of NOMA over orthogonal multiple access(OMA) such as orthogonal frequency division multiple access(OFDMA) adoptedby LTE, and the status of 3GPP standardization related to NOMA.展开更多
Capcity both in uplink and downlink of TD-SCDMA (time division-synchronous code division multiple access) system is studied in a multi-cell environment. The theoretical expressions of the mean of intercell interferenc...Capcity both in uplink and downlink of TD-SCDMA (time division-synchronous code division multiple access) system is studied in a multi-cell environment. The theoretical expressions of the mean of intercell interference in uplink and the mean of sum of power allocation in downlink are given, by which uplink and downlink capacity is analyzed. Furthermore, we give the simulation models for both uplink and downlink capacity. The results from theoretical analysis and simulation fit very well. In the end, the maximum number of users that TD-SCDMA system can serve for 12.2 k speech service is given.展开更多
Random access is a well-known multiple access method for uncoordinated communication nodes.Existing work mainly focuses on optimizing iterative access protocols,assuming that packets are corrupted once they are collid...Random access is a well-known multiple access method for uncoordinated communication nodes.Existing work mainly focuses on optimizing iterative access protocols,assuming that packets are corrupted once they are collided,or that feedback is available and can be exploited.In practice,a packet may still be able to be recovered successfully even when collided with other packets.System design and performance analysis under such a situation,particularly when the details of collision are taken into consideration,are less known.In this paper,we provide a framework for analytically evaluating the actual detection performance in a random temporal multiple access system where nodes can only transmit.Explicit expressions are provided for collision probability and signal to interference and noise ratio(SINR)when different numbers of packets are collided.We then discuss and compare two receiver options for the AP,and provide detailed receiver design for the premium one.In particular,we propose a synchronization scheme which can largely reduce the preamble length.We also demonstrate that system performance could be a convex function of preamble length both analytically and via simulation,as well as the forward error correction(FEC)coding rate.展开更多
Non-orthogonal multiple access(NOMA) is a new access method to achieve high performance gains in terms of capacity and throughput, so it is currently under consideration as one of the candidates for fifth generation(5...Non-orthogonal multiple access(NOMA) is a new access method to achieve high performance gains in terms of capacity and throughput, so it is currently under consideration as one of the candidates for fifth generation(5 G) technologies. NOMA utilizes power domain in order to superimpose signals of multiple users in a single transmitted signal. This creates a lot of interference at the receive side. Although the use of successive interference cancellation(SIC) technique reduces the interference, but to further improve the receiver performance, in this paper, we have proposed a joint Walsh-Hadamard transform(WHT) and NOMA approach for achieving better performance gains than the conventional NOMA. WHT is a well-known code used in communication systems and is used as an orthogonal variable spreading factor(OVSF) in communication systems. Application of WHT to NOMA results in low bit error rate(BER) and high throughput performance for both low and high channel gain users. Further, it also reduces peak to average power ratio(PAPR) of the user signal. The results are discussed in terms of comparison between the conventionalNOMA and the proposed technique, which shows that it offers high performance gains in terms of low BER at different SNR levels, reduced PAPR, high user throughput performance and better spectral efficiency.展开更多
In CDMA communication systems, all the subscribers share the common channel. The limitation factor on the system’s capacity is not the bandwidth, but multiuser interference and the near far problem. This paper models...In CDMA communication systems, all the subscribers share the common channel. The limitation factor on the system’s capacity is not the bandwidth, but multiuser interference and the near far problem. This paper models CDMA system from the perspective of mobile radio channels corrupted by additive white noise generated by multipath and multiple access interferences. The system’s receiver is assisted using different combining diversity techniques. Performance analysis of the system with these detection techniques is presented. The paper demonstrates that combining diversity techniques in the system’s receivers markedly improve the performance of CDMA systems.展开更多
A quantum access network has been implemented by frequency division multiple access and time division multiple access, while code division multiple access is limited for its difficulty to realize the orthogonality of ...A quantum access network has been implemented by frequency division multiple access and time division multiple access, while code division multiple access is limited for its difficulty to realize the orthogonality of the code. Recently,the chaotic phase shifters were proposed to guarantee the orthogonality by different chaotic signals and spread the spectral content of the quantum states. In this letter, we propose to implement the code division multiple access quantum network by using chaotic phase shifters and synchronization. Due to the orthogonality of the different chaotic phase shifter, every pair of users can faithfully transmit quantum information through a common channel and have little crosstalk between different users. Meanwhile, the broadband spectra of chaotic signals efficiently help the quantum states to defend against channel loss and noise.展开更多
An important feature of the traffic in mobile networks is burstiness. Drawbacks of conventional power control algorithms for time division duplex (TDD)-code division multiple access (CDMA) systems are analyzed. A ...An important feature of the traffic in mobile networks is burstiness. Drawbacks of conventional power control algorithms for time division duplex (TDD)-code division multiple access (CDMA) systems are analyzed. A joint power control algorithm based on service factor is presented to address the TDD-CDMA mobile services in the burst mode according to the Markov modulated Bernoulli process. The joint power control equation is derived. A function model is developed to verify the new algorithm and evaluate its performance. Simulation results show that the new power control algorithm can estimate interference strength more precisely, speed up convergence of power control, and enhance power efficiency and system capacity. It is shown that the proposed algorithm is more robust against link gain changes, and outperforms the reference algorithms.展开更多
A new segmented correlating decoder of synchronous optical CDMA using modified prime sequence codes is proposed. The performance of the proposed system is analyzed under the assumption of Poisson shot noise model for ...A new segmented correlating decoder of synchronous optical CDMA using modified prime sequence codes is proposed. The performance of the proposed system is analyzed under the assumption of Poisson shot noise model for the receiver photodetector. The decoder technique is shown to be more effective to improve the bit error probability performance than the method using an optical hard-limiter.展开更多
Time reversal mirror (TRM) can use the physical characteristics of the underwater acoustic (UWA) channel to focus on the desired user in multi-user UWA communication. The active average sound intensity (AASI) de...Time reversal mirror (TRM) can use the physical characteristics of the underwater acoustic (UWA) channel to focus on the desired user in multi-user UWA communication. The active average sound intensity (AASI) detector can estimate all azimuths of users with the same frequency band at the same time in order to achieve directional communication by vector combination. Space-division multiple access (SDMA) based on TRM combined with the AASI detector is proposed in this paper, which can make the capacity of the code division multiple access (CDMA) UWA system significantly increase. The simulation and lake test results show that the 7-user UWA multi-user system can achieve low bit error communication.展开更多
Call admission control (CAC) and resource reservation (RR) for mobile communication are two important factors that guarantee system efficiency and quality of service (QoS) required for different services in a very sca...Call admission control (CAC) and resource reservation (RR) for mobile communication are two important factors that guarantee system efficiency and quality of service (QoS) required for different services in a very scarce resource as the radio spectrum. A new scheme was proposed which extends the concepts of resource sharing and reservations for wideband code division multiple access (WCDMA) systems with a unique feature of soft capacity. Voice and data traffic were considered. The traffic is further classified into handoff and new requests. The reservation thresholds were dynamically adjusted according to the traffic pattern and mobility prediction in order to achieve the maximum channel utilization, while guaranteeing different QoS constraints. The performance of proposed scheme was evaluated using Markov models. New call blocking probability, handoff call dropping probability, and channel utilization were used as benchmarks for the proposed scheme.展开更多
In recent times, there has been growing interests in integration of voice, data and video traffic in wireless communication networks. With these growing interests, WCDMA has immerged as an attractive access technique....In recent times, there has been growing interests in integration of voice, data and video traffic in wireless communication networks. With these growing interests, WCDMA has immerged as an attractive access technique. The performance of WCDMA system is deteriorated in presence of multipath fading environment. The paper presents space-time coded minimum mean square error (MMSE) Decision Feedback Equalizer (DFE) for wideband code division multiple access (WCDMA) in a frequency selective channel. The filter coefficients in MMSE DFE are optimized to suppress noise, intersymbol interference (ISI), and multiple access interference (MAI) with reasonable system complexity. For the above structure, we have presented the estimation of BER for a MMSE DFE using computer simulation experiments. The simulation includes the effects of additive white Gaussian noise, multipath fading and multiple access interference (MAI). Furthermore, the performance is compared with standard linear equalizer (LE) and RAKE receiver. Numerical and simulation results show that the MMSE DFE exhibits significant performance improvement over the standard linear equalizer (LE) and RAKE receiver.展开更多
A multiple watermarking algorithm is presented according to the multiple accessing technique of the code division multiple access (CDMA) system. Multiple watermarks are embedded into digital images in the wavelet tr...A multiple watermarking algorithm is presented according to the multiple accessing technique of the code division multiple access (CDMA) system. Multiple watermarks are embedded into digital images in the wavelet transform domain. Each of the watermarks is embedded and extracted independently without impacts to each other. Multiple watermarks are convolution encoded and block interleaved, and the orthogonal Gold sequences are used to spread spectrum of the copyright messages. CDMA encoded water-mark messages are embedded into the wavelet sub-bands excluding the wavelet HH1 sub-bands. The embedment amplitude is decided by Watson' s perceptual model of wavelet transform domain, and the embedmeut position in the selected wavelet sub-bands is decided randomly by a pseudo-random noise (PN) sequence. As a blind watermm'king algorithm, watermarks are extracted without original image. The watermarking capacity of proposed algorithm is also discussed. When two watermarks are embedded in an image at the same time, the capacity is larger than the capacity when a single watermark is embedded, and is smaller than the sum of the capacity of two separately embedded watermarks. Experimental results show that the proposed algorithm improves the detection bits error rate (BER) observably, and the multiple watermarks have a preferable robustness and invisibility.展开更多
A cooperative full-duplex(FD)non-orthogonal multiple access(NOMA)network is consid-ered,in which a source communicate with multiple users via multiple energy harvesting(EH)FD relays.Based on this structure,a novel rel...A cooperative full-duplex(FD)non-orthogonal multiple access(NOMA)network is consid-ered,in which a source communicate with multiple users via multiple energy harvesting(EH)FD relays.Based on this structure,a novel relay selection scheme is proposed over Nakagamim fading channels by considering both the channel state information(CSI)and the energy statuses of relays.A finite Markov chain is adopted to capture the evolution of relay batteries and simplify the performance analysis by making some reasonable assumptions.General closed-form expressions of the outage probability and the ergodic sumrate are derived.All the theoretical results are validated by Monte-Carlo simulations.The impacts of various system parameters,such as the number of relays,the self-interference(SI)at the involved relay and battery size,on the performance are extensively investi-gated.It is shown that the usage of NOMA with FD relaying outperforms the half-duplex(HD)-NO-MA and conventional orthogonal multiple access(OMA)network when the self-interference is not too large.展开更多
A passive optical network (PON) scheme based on optical code division multiplexing (OCDM) for the downstream traffics is proposed and analyzed in detail. In the PON, the downstream traffics are broadcasted by OCDM...A passive optical network (PON) scheme based on optical code division multiplexing (OCDM) for the downstream traffics is proposed and analyzed in detail. In the PON, the downstream traffics are broadcasted by OCDM technology to guarantee the security, while the upstream traffics pass through the same optical fiber by the common time division multiple access (TDMA) technology to decrease the cost. This schemes are denoted as OCDM/TDMA-PON, which can be applied to an optical access network (OAN) with full services on demand, such as Internet protocol, video on demand, tele-presence and high quality audio. The proposed OCDM/TDMA-PON scheme combines advantages of PON, TDMA, and OCDM technology. Simulation results indicate that the designed scheme improves the OAN performance, and enhances flexibility and scalability of the system.展开更多
文摘Normally,in the downlink Network-Coded Multiple Access(NCMA)system,the same power is allocated to different users.However,equal power allocation is unsuitable for some scenarios,such as when user devices have different Quality of Service(QoS)requirements.Hence,we study the power allocation in the downlink NCMA system in this paper,and propose a downlink Network-Coded Multiple Access with Diverse Power(NCMA-DP),wherein different amounts of power are allocated to different users.In terms of the Bit Error Rate(BER)of the multi-user decoder,and the number of packets required to correctly decode the message,the performance of the user with more allocated power is greatly improved compared to the Conventional NCMA(NCMA-C).Meanwhile,the performance of the user with less allocated power is still much better than NCMA-C.Furthermore,the overall throughput of NCMA-DP is greatly improved compared to that of NCMA-C.The simulation results demonstrate the remarkable performance of the proposed NCMA-DP.
基金supported in part by the National Natural Science Foundation of China under Grant U23A20278in part by the National Natural Science Foundation of China under Grant 62171151in part by the Fundamental Research Funds for the Central Universities under Grant HIT.OCEF.2021012。
文摘The hybrid carrier(HC)system rooted in the carrier fusion concept is gradually garnering attention.In this paper,we study the extended hybrid carrier(EHC)multiple access scheme to ensure reliable wireless communication.By employing the EHC modulation,a power layered multiplexing framework is realized,which exhibits enhanced interference suppression capability owing to the more uniform energy distribution design.The implementation method and advantage mechanism are explicated respectively for the uplink and downlink,and the performance analysis under varying channel conditions is provided.In addition,considering the connectivity demand,we explore the non-orthogonal multiple access(NOMA)method of the EHC system and develop the EHC sparse code multiple access scheme.The proposed scheme melds the energy spread superiority of EHC with the access capacity of NOMA,facilitating superior support for massive connectivity in high mobility environments.Simulation results have verified the feasibility and advantages of the proposed scheme.Compared with existing HC multiple access schemes,the proposed scheme exhibits robust bit error rate performance and can better guarantee multiple access performance in complex scenarios of nextgeneration communications.
文摘In this paper,ambient IoT is used as a typical use case of massive connections for the sixth generation(6G)mobile communications where we derive the performance requirements to facilitate the evaluation of technical solutions.A rather complete design of unsourced multiple access is proposed in which two key parts:a compressed sensing module for active user detection,and a sparse interleaver-division multiple access(SIDMA)module are simulated side by side on a same platform at balanced signal to noise ratio(SNR)operating points.With a proper combination of compressed sensing matrix,a convolutional encoder,receiver algorithms,the simulated performance results appear superior to the state-of-the-art benchmark,yet with relatively less complicated processing.
文摘Formany years,researchers have explored power allocation(PA)algorithms driven bymodels in wireless networks where multiple-user communications with interference are present.Nowadays,data-driven machine learning methods have become quite popular in analyzing wireless communication systems,which among them deep reinforcement learning(DRL)has a significant role in solving optimization issues under certain constraints.To this purpose,in this paper,we investigate the PA problem in a k-user multiple access channels(MAC),where k transmitters(e.g.,mobile users)aim to send an independent message to a common receiver(e.g.,base station)through wireless channels.To this end,we first train the deep Q network(DQN)with a deep Q learning(DQL)algorithm over the simulation environment,utilizing offline learning.Then,the DQN will be used with the real data in the online training method for the PA issue by maximizing the sumrate subjected to the source power.Finally,the simulation results indicate that our proposedDQNmethod provides better performance in terms of the sumrate compared with the available DQL training approaches such as fractional programming(FP)and weighted minimum mean squared error(WMMSE).Additionally,by considering different user densities,we show that our proposed DQN outperforms benchmark algorithms,thereby,a good generalization ability is verified over wireless multi-user communication systems.
基金supported by National High Technology Research and Development Program of China (863 Program, No. 2015AA01A709)
文摘Massive machine type communication(m MTC) is one of the key application scenarios for the fifth generation mobile communication(5 G). Grant-free(GF) transmission can reduce the high signaling overhead in m MTC. Non-orthogonal multiple access(NMA) can support more users for m MTC than orthogonal frequency division multiple access(OFDMA). Applying GF transmission in NMA system becomes an active topic recently. The in-depth study on applying GF transmission in pattern division multiple access(PDMA), a competitive candidate scheme of NMA, is investigated in this paper. The definition, latency and allocation of resource and transmission mechanism for GF-PDMA are discussed in detail. The link-level and system-level evaluations are provided to verify the analysis. The analysis and simulation results demonstrate that the proposed GF-PDMA has lower latency than grant based PDMA(GB-PDMA), possesses strong scalability to confront collision and provides almost 2.15 times gain over GF-OFDMA in terms of supporting the number of active users in the system.
文摘In recent years, non-orthogonal multiple access(NOMA) has attracted a lot of attention as a novel and promising power-domain us-er multiplexing scheme for Long-Term Evolution(LTE) enhancement and 5G. NOMA is able to contribute to the improvement ofthe tradeoff between system capacity and user fairness(i.e., cell-edge user experience). This improvement becomes in particularemphasized in a cellular system where the channel conditions vary significantly among users due to the near-far effect. In this arti-cle, we provide an overview of the concept, design and performance of NOMA. In addition, we review the potential benefits and is-sues of NOMA over orthogonal multiple access(OMA) such as orthogonal frequency division multiple access(OFDMA) adoptedby LTE, and the status of 3GPP standardization related to NOMA.
文摘Capcity both in uplink and downlink of TD-SCDMA (time division-synchronous code division multiple access) system is studied in a multi-cell environment. The theoretical expressions of the mean of intercell interference in uplink and the mean of sum of power allocation in downlink are given, by which uplink and downlink capacity is analyzed. Furthermore, we give the simulation models for both uplink and downlink capacity. The results from theoretical analysis and simulation fit very well. In the end, the maximum number of users that TD-SCDMA system can serve for 12.2 k speech service is given.
基金supported by National Natural Science Foundation of China (No. 61271236)Major Projects of Natural Science Research of Jiangsu Provincial Universities (No. 17KJA510004)Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX17_0763, No.KYCX18_0907)
文摘Random access is a well-known multiple access method for uncoordinated communication nodes.Existing work mainly focuses on optimizing iterative access protocols,assuming that packets are corrupted once they are collided,or that feedback is available and can be exploited.In practice,a packet may still be able to be recovered successfully even when collided with other packets.System design and performance analysis under such a situation,particularly when the details of collision are taken into consideration,are less known.In this paper,we provide a framework for analytically evaluating the actual detection performance in a random temporal multiple access system where nodes can only transmit.Explicit expressions are provided for collision probability and signal to interference and noise ratio(SINR)when different numbers of packets are collided.We then discuss and compare two receiver options for the AP,and provide detailed receiver design for the premium one.In particular,we propose a synchronization scheme which can largely reduce the preamble length.We also demonstrate that system performance could be a convex function of preamble length both analytically and via simulation,as well as the forward error correction(FEC)coding rate.
基金supported by Priority Research Centers Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2018R1A6A1A03024003)
文摘Non-orthogonal multiple access(NOMA) is a new access method to achieve high performance gains in terms of capacity and throughput, so it is currently under consideration as one of the candidates for fifth generation(5 G) technologies. NOMA utilizes power domain in order to superimpose signals of multiple users in a single transmitted signal. This creates a lot of interference at the receive side. Although the use of successive interference cancellation(SIC) technique reduces the interference, but to further improve the receiver performance, in this paper, we have proposed a joint Walsh-Hadamard transform(WHT) and NOMA approach for achieving better performance gains than the conventional NOMA. WHT is a well-known code used in communication systems and is used as an orthogonal variable spreading factor(OVSF) in communication systems. Application of WHT to NOMA results in low bit error rate(BER) and high throughput performance for both low and high channel gain users. Further, it also reduces peak to average power ratio(PAPR) of the user signal. The results are discussed in terms of comparison between the conventionalNOMA and the proposed technique, which shows that it offers high performance gains in terms of low BER at different SNR levels, reduced PAPR, high user throughput performance and better spectral efficiency.
文摘In CDMA communication systems, all the subscribers share the common channel. The limitation factor on the system’s capacity is not the bandwidth, but multiuser interference and the near far problem. This paper models CDMA system from the perspective of mobile radio channels corrupted by additive white noise generated by multipath and multiple access interferences. The system’s receiver is assisted using different combining diversity techniques. Performance analysis of the system with these detection techniques is presented. The paper demonstrates that combining diversity techniques in the system’s receivers markedly improve the performance of CDMA systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.61475099 and 61102053)the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices(Grant No.KF201405)+1 种基金the Open Fund of IPOC(BUPT)(Grant No.IPOC2015B004)the Program of State Key Laboratory of Information Security(Grant No.2016-MS-05)
文摘A quantum access network has been implemented by frequency division multiple access and time division multiple access, while code division multiple access is limited for its difficulty to realize the orthogonality of the code. Recently,the chaotic phase shifters were proposed to guarantee the orthogonality by different chaotic signals and spread the spectral content of the quantum states. In this letter, we propose to implement the code division multiple access quantum network by using chaotic phase shifters and synchronization. Due to the orthogonality of the different chaotic phase shifter, every pair of users can faithfully transmit quantum information through a common channel and have little crosstalk between different users. Meanwhile, the broadband spectra of chaotic signals efficiently help the quantum states to defend against channel loss and noise.
基金Project supported by the National Science Foundation for Creative Research Groups (Grant No.60521002), and the National Key Technologies R&D Program (Grant No.2005BA908B02)
文摘An important feature of the traffic in mobile networks is burstiness. Drawbacks of conventional power control algorithms for time division duplex (TDD)-code division multiple access (CDMA) systems are analyzed. A joint power control algorithm based on service factor is presented to address the TDD-CDMA mobile services in the burst mode according to the Markov modulated Bernoulli process. The joint power control equation is derived. A function model is developed to verify the new algorithm and evaluate its performance. Simulation results show that the new power control algorithm can estimate interference strength more precisely, speed up convergence of power control, and enhance power efficiency and system capacity. It is shown that the proposed algorithm is more robust against link gain changes, and outperforms the reference algorithms.
文摘A new segmented correlating decoder of synchronous optical CDMA using modified prime sequence codes is proposed. The performance of the proposed system is analyzed under the assumption of Poisson shot noise model for the receiver photodetector. The decoder technique is shown to be more effective to improve the bit error probability performance than the method using an optical hard-limiter.
基金supported by the National Natural Science Foundation of China(6147113751179034)+3 种基金the Ships Pre-research Support Technology Fund(13J3.1.5)the Natural Science Foundation of Heilongjiang Province(F201109)the Innovation Talents of Science and the Technology Research Projects of Harbin(2013RFQXJ101)the National Defense Basic Technology Research(JSJC2013604C012)
文摘Time reversal mirror (TRM) can use the physical characteristics of the underwater acoustic (UWA) channel to focus on the desired user in multi-user UWA communication. The active average sound intensity (AASI) detector can estimate all azimuths of users with the same frequency band at the same time in order to achieve directional communication by vector combination. Space-division multiple access (SDMA) based on TRM combined with the AASI detector is proposed in this paper, which can make the capacity of the code division multiple access (CDMA) UWA system significantly increase. The simulation and lake test results show that the 7-user UWA multi-user system can achieve low bit error communication.
文摘Call admission control (CAC) and resource reservation (RR) for mobile communication are two important factors that guarantee system efficiency and quality of service (QoS) required for different services in a very scarce resource as the radio spectrum. A new scheme was proposed which extends the concepts of resource sharing and reservations for wideband code division multiple access (WCDMA) systems with a unique feature of soft capacity. Voice and data traffic were considered. The traffic is further classified into handoff and new requests. The reservation thresholds were dynamically adjusted according to the traffic pattern and mobility prediction in order to achieve the maximum channel utilization, while guaranteeing different QoS constraints. The performance of proposed scheme was evaluated using Markov models. New call blocking probability, handoff call dropping probability, and channel utilization were used as benchmarks for the proposed scheme.
文摘In recent times, there has been growing interests in integration of voice, data and video traffic in wireless communication networks. With these growing interests, WCDMA has immerged as an attractive access technique. The performance of WCDMA system is deteriorated in presence of multipath fading environment. The paper presents space-time coded minimum mean square error (MMSE) Decision Feedback Equalizer (DFE) for wideband code division multiple access (WCDMA) in a frequency selective channel. The filter coefficients in MMSE DFE are optimized to suppress noise, intersymbol interference (ISI), and multiple access interference (MAI) with reasonable system complexity. For the above structure, we have presented the estimation of BER for a MMSE DFE using computer simulation experiments. The simulation includes the effects of additive white Gaussian noise, multipath fading and multiple access interference (MAI). Furthermore, the performance is compared with standard linear equalizer (LE) and RAKE receiver. Numerical and simulation results show that the MMSE DFE exhibits significant performance improvement over the standard linear equalizer (LE) and RAKE receiver.
基金the National High Technology Research and Development Programme of China(No 2006AA01Z407,No.2007AA01Z478)the Postdoctoral Science Foundation of China(No.20070420707)
文摘A multiple watermarking algorithm is presented according to the multiple accessing technique of the code division multiple access (CDMA) system. Multiple watermarks are embedded into digital images in the wavelet transform domain. Each of the watermarks is embedded and extracted independently without impacts to each other. Multiple watermarks are convolution encoded and block interleaved, and the orthogonal Gold sequences are used to spread spectrum of the copyright messages. CDMA encoded water-mark messages are embedded into the wavelet sub-bands excluding the wavelet HH1 sub-bands. The embedment amplitude is decided by Watson' s perceptual model of wavelet transform domain, and the embedmeut position in the selected wavelet sub-bands is decided randomly by a pseudo-random noise (PN) sequence. As a blind watermm'king algorithm, watermarks are extracted without original image. The watermarking capacity of proposed algorithm is also discussed. When two watermarks are embedded in an image at the same time, the capacity is larger than the capacity when a single watermark is embedded, and is smaller than the sum of the capacity of two separately embedded watermarks. Experimental results show that the proposed algorithm improves the detection bits error rate (BER) observably, and the multiple watermarks have a preferable robustness and invisibility.
基金the National Natural Science Foundation of China(No.61901245).
文摘A cooperative full-duplex(FD)non-orthogonal multiple access(NOMA)network is consid-ered,in which a source communicate with multiple users via multiple energy harvesting(EH)FD relays.Based on this structure,a novel relay selection scheme is proposed over Nakagamim fading channels by considering both the channel state information(CSI)and the energy statuses of relays.A finite Markov chain is adopted to capture the evolution of relay batteries and simplify the performance analysis by making some reasonable assumptions.General closed-form expressions of the outage probability and the ergodic sumrate are derived.All the theoretical results are validated by Monte-Carlo simulations.The impacts of various system parameters,such as the number of relays,the self-interference(SI)at the involved relay and battery size,on the performance are extensively investi-gated.It is shown that the usage of NOMA with FD relaying outperforms the half-duplex(HD)-NO-MA and conventional orthogonal multiple access(OMA)network when the self-interference is not too large.
文摘A passive optical network (PON) scheme based on optical code division multiplexing (OCDM) for the downstream traffics is proposed and analyzed in detail. In the PON, the downstream traffics are broadcasted by OCDM technology to guarantee the security, while the upstream traffics pass through the same optical fiber by the common time division multiple access (TDMA) technology to decrease the cost. This schemes are denoted as OCDM/TDMA-PON, which can be applied to an optical access network (OAN) with full services on demand, such as Internet protocol, video on demand, tele-presence and high quality audio. The proposed OCDM/TDMA-PON scheme combines advantages of PON, TDMA, and OCDM technology. Simulation results indicate that the designed scheme improves the OAN performance, and enhances flexibility and scalability of the system.