The method for Bearings-Only Target Motion Analysis (BO-TMA) based on bearing measurements fusion of two arrays is studied. The algorithms of pseudolinear processing, extended Kalman filter and maximum likelihood est...The method for Bearings-Only Target Motion Analysis (BO-TMA) based on bearing measurements fusion of two arrays is studied. The algorithms of pseudolinear processing, extended Kalman filter and maximum likelihood estimation are presented. The results of simulation experiments show that the BO-TMA method based on association of multiple arrays not only makes contributions towards eliminating maneuvers needed by bearings-only TMA based on single array,but also improves the stabilization and global convergence for varied estimation algorithms.展开更多
Two target motion analysis (TMA) methods using multi-dimension information are studied, one is TMA with bearing-frequency and the other is TMA with multiple arrays. The optimization algorithm combining Gauss-Newton (G...Two target motion analysis (TMA) methods using multi-dimension information are studied, one is TMA with bearing-frequency and the other is TMA with multiple arrays. The optimization algorithm combining Gauss-Newton (G-N) method with Levenberg-Marquardt (L- M) method is applied to analyze the performance of target tracking with maximum likelihood estimation(MLE), and Monte Carlo experiments are presented. The results show that although the TMA with multi-dimension information have eliminated the maneuvers needed by conven- tional bearing-only TMA, but the application are not of universality展开更多
文摘The method for Bearings-Only Target Motion Analysis (BO-TMA) based on bearing measurements fusion of two arrays is studied. The algorithms of pseudolinear processing, extended Kalman filter and maximum likelihood estimation are presented. The results of simulation experiments show that the BO-TMA method based on association of multiple arrays not only makes contributions towards eliminating maneuvers needed by bearings-only TMA based on single array,but also improves the stabilization and global convergence for varied estimation algorithms.
文摘Two target motion analysis (TMA) methods using multi-dimension information are studied, one is TMA with bearing-frequency and the other is TMA with multiple arrays. The optimization algorithm combining Gauss-Newton (G-N) method with Levenberg-Marquardt (L- M) method is applied to analyze the performance of target tracking with maximum likelihood estimation(MLE), and Monte Carlo experiments are presented. The results show that although the TMA with multi-dimension information have eliminated the maneuvers needed by conven- tional bearing-only TMA, but the application are not of universality