In the Kaiping Coal field,mining of five coal seams,located within 80 m in the Kailuan Group,#5,#7,#8,#9 and#12 coal seam,is difficult due to small interburden thickness,concentrated stress distributions,high coal sea...In the Kaiping Coal field,mining of five coal seams,located within 80 m in the Kailuan Group,#5,#7,#8,#9 and#12 coal seam,is difficult due to small interburden thickness,concentrated stress distributions,high coal seam metamorphism,and complex geological conditions.By using the ZTR12 geological penetration radar(GPR)survey combined with borehole observations,the overburden caving due to mining of the five coals seams was measured.The development characteristics of full-cover rock fractures after mining were obtained from the GPR scan,which provides a measurement basis for the control of rock strata in close multiple coal seam mining.For the first time,it was found that the overburden caving pattern shows a periodic triangular caved characteristic.Furthermore,it is proposed that an upright triangular collapsed pile masonry and an inverted triangular with larger fragments piled up alternately appear in the lower gob.The research results show that the roof structure formed in the gob area can support the key overlying strata,which is beneficial to ensure the integrity and stability of the upper coal seams in multiple-seam mining of close coal seams.展开更多
Gas production from multiple coal seams has become common practice in many coal basins around the world. Although gas production rates are typically enhanced, the economic viability of such practice is not well studie...Gas production from multiple coal seams has become common practice in many coal basins around the world. Although gas production rates are typically enhanced, the economic viability of such practice is not well studied. In order to investigate the technical and economic feasibility of multiple coal seams production, reservoir simulation integrated with economics modelling was performed to study the effect of important reservoir properties of the secondary coal seam on production and economic performance using both vertical and horizontal wells. The results demonstrated that multiple seam gas production of using both vertical and horizontal wells have competitive advantage over single layer production under most scenarios. Gas content and permeability of the secondary coal seam are the most important reservoir properties that have impact on the economic feasibility of multiple seam gas production. The comparison of vertical well and horizontal well performance showed that horizontal well is more economically attractive for both single well and gas field. Moreover, wellhead price is the most sensitive to the economic performance, followed by operating costs and government subsidy. Although the results of reservoir simulation combined with economic analysis are subject to assumptions, multiple seam gas production is more likely to maintain profitability compared with single layer production.展开更多
In this work,CH4 isothermal adsorption measurements were carried out on 64 coal samples collected from western Guizhou Province of China,and the coalbed methane(CBM)desorption processes were quantitatively analyzed.Th...In this work,CH4 isothermal adsorption measurements were carried out on 64 coal samples collected from western Guizhou Province of China,and the coalbed methane(CBM)desorption processes were quantitatively analyzed.The results show that the Langmuir volume and the Langmuir pressure are controlled by coalification,and tend to increase as the vitrinite reflectance changes from 0.98% to 4.3%.Based on a division method of CBM desorption stages,the CBM desorption process were divided into four stages(inefficient,slow,fast and sensitive desorption stages)by three key pressure nodes(the initial,turning and sensitive pressures).The fast and sensitive desorption stages with high desorption efficiency are the key for achieving high gas production.A theoretical chart of the critical desorption pressure(P_(cd))and its relationship with different pressure nodes was established.The higher-rank coals have the higher initial,turning and sensitive pressures,with larger difference between pressure nodes.Most CBM wells only undergo partial desorption stages due to the differences in P_(cd) caused by the present-gas content.Under the same gas content conditions,the higher the coal rank,the less desorption stages that CBM needs to go through.During coalbed methane co-production from multiple coal seams within vertically superposed pressure systems,the reservoir pressure,the P_(cd),the initial working liquid level(WLL)height,and coal depth are key factors for evaluating whether coal seams can produce CBM simultaneously.It must be ensured that each production layer enters at least the fast desorption stage prior to that the WLL was lower than the depth of each layer.Only on this basis can all layers achieve the maximum gas production.展开更多
In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from ...In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from the Central Appalachian region is used as a case study.At this mine,unexpected roof conditions were encountered during development below previously mined panels.Stress mapping and observation of ground conditions were used to quantify the success of entry support systems in three room-and-pillar panels.Numerical model analyses were initially conducted to estimate the stresses induced by the multiple-seam mining at the locations of the affected entries.The SRM was used to quantify the stability factor of the supported roof of the entries at selected locations.The SRM-calculated stability factors were compared with observations made during the site visits,and the results demonstrate that the SRM adequately identifies the unexpected roof conditions in this complex case.It is concluded that the SRM can be used to effectively evaluate the likely success of roof supports and the stability condition of entries in coal mines.展开更多
基金The research is supported by National Key R&D Program of China(No.2017YFC060300204)National Natural Science Foundation of China(No.52074293)+2 种基金Hebei Province Natural Science Foundation of China(No.E2020402041)Yue Qi Young Scholar Project,CUMTB and Yue Qi Distinguished Scholar Project(No.800015Z1138)China University of Mining&Technology,Beijing.
文摘In the Kaiping Coal field,mining of five coal seams,located within 80 m in the Kailuan Group,#5,#7,#8,#9 and#12 coal seam,is difficult due to small interburden thickness,concentrated stress distributions,high coal seam metamorphism,and complex geological conditions.By using the ZTR12 geological penetration radar(GPR)survey combined with borehole observations,the overburden caving due to mining of the five coals seams was measured.The development characteristics of full-cover rock fractures after mining were obtained from the GPR scan,which provides a measurement basis for the control of rock strata in close multiple coal seam mining.For the first time,it was found that the overburden caving pattern shows a periodic triangular caved characteristic.Furthermore,it is proposed that an upright triangular collapsed pile masonry and an inverted triangular with larger fragments piled up alternately appear in the lower gob.The research results show that the roof structure formed in the gob area can support the key overlying strata,which is beneficial to ensure the integrity and stability of the upper coal seams in multiple-seam mining of close coal seams.
文摘Gas production from multiple coal seams has become common practice in many coal basins around the world. Although gas production rates are typically enhanced, the economic viability of such practice is not well studied. In order to investigate the technical and economic feasibility of multiple coal seams production, reservoir simulation integrated with economics modelling was performed to study the effect of important reservoir properties of the secondary coal seam on production and economic performance using both vertical and horizontal wells. The results demonstrated that multiple seam gas production of using both vertical and horizontal wells have competitive advantage over single layer production under most scenarios. Gas content and permeability of the secondary coal seam are the most important reservoir properties that have impact on the economic feasibility of multiple seam gas production. The comparison of vertical well and horizontal well performance showed that horizontal well is more economically attractive for both single well and gas field. Moreover, wellhead price is the most sensitive to the economic performance, followed by operating costs and government subsidy. Although the results of reservoir simulation combined with economic analysis are subject to assumptions, multiple seam gas production is more likely to maintain profitability compared with single layer production.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 42130802, 41772132), the Major Projects of Ningxia Key Research and Development Plan (No. 2020BFG2003)the Fundamental Research Funds for the Central Universities (No. 2652019095)the Key Technologies R&D Programme of PetroChina Company Limited (No. 2021DJ2306).
文摘In this work,CH4 isothermal adsorption measurements were carried out on 64 coal samples collected from western Guizhou Province of China,and the coalbed methane(CBM)desorption processes were quantitatively analyzed.The results show that the Langmuir volume and the Langmuir pressure are controlled by coalification,and tend to increase as the vitrinite reflectance changes from 0.98% to 4.3%.Based on a division method of CBM desorption stages,the CBM desorption process were divided into four stages(inefficient,slow,fast and sensitive desorption stages)by three key pressure nodes(the initial,turning and sensitive pressures).The fast and sensitive desorption stages with high desorption efficiency are the key for achieving high gas production.A theoretical chart of the critical desorption pressure(P_(cd))and its relationship with different pressure nodes was established.The higher-rank coals have the higher initial,turning and sensitive pressures,with larger difference between pressure nodes.Most CBM wells only undergo partial desorption stages due to the differences in P_(cd) caused by the present-gas content.Under the same gas content conditions,the higher the coal rank,the less desorption stages that CBM needs to go through.During coalbed methane co-production from multiple coal seams within vertically superposed pressure systems,the reservoir pressure,the P_(cd),the initial working liquid level(WLL)height,and coal depth are key factors for evaluating whether coal seams can produce CBM simultaneously.It must be ensured that each production layer enters at least the fast desorption stage prior to that the WLL was lower than the depth of each layer.Only on this basis can all layers achieve the maximum gas production.
文摘In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from the Central Appalachian region is used as a case study.At this mine,unexpected roof conditions were encountered during development below previously mined panels.Stress mapping and observation of ground conditions were used to quantify the success of entry support systems in three room-and-pillar panels.Numerical model analyses were initially conducted to estimate the stresses induced by the multiple-seam mining at the locations of the affected entries.The SRM was used to quantify the stability factor of the supported roof of the entries at selected locations.The SRM-calculated stability factors were compared with observations made during the site visits,and the results demonstrate that the SRM adequately identifies the unexpected roof conditions in this complex case.It is concluded that the SRM can be used to effectively evaluate the likely success of roof supports and the stability condition of entries in coal mines.