期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Advanced Feature Fusion Algorithm Based on Multiple Convolutional Neural Network for Scene Recognition 被引量:5
1
作者 Lei Chen Kanghu Bo +1 位作者 Feifei Lee Qiu Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第2期505-523,共19页
Scene recognition is a popular open problem in the computer vision field.Among lots of methods proposed in recent years,Convolutional Neural Network(CNN)based approaches achieve the best performance in scene recogniti... Scene recognition is a popular open problem in the computer vision field.Among lots of methods proposed in recent years,Convolutional Neural Network(CNN)based approaches achieve the best performance in scene recognition.We propose in this paper an advanced feature fusion algorithm using Multiple Convolutional Neural Network(Multi-CNN)for scene recognition.Unlike existing works that usually use individual convolutional neural network,a fusion of multiple different convolutional neural networks is applied for scene recognition.Firstly,we split training images in two directions and apply to three deep CNN model,and then extract features from the last full-connected(FC)layer and probabilistic layer on each model.Finally,feature vectors are fused with different fusion strategies in groups forwarded into SoftMax classifier.Our proposed algorithm is evaluated on three scene datasets for scene recognition.The experimental results demonstrate the effectiveness of proposed algorithm compared with other state-of-art approaches. 展开更多
关键词 Scene recognition deep feature fusion multiple convolutional neural network.
下载PDF
A BPR-CNN Based Hand Motion Classifier Using Electric Field Sensors
2
作者 Hunmin Lee Inseop Na +1 位作者 Kamoliddin Bultakov Youngchul Kim 《Computers, Materials & Continua》 SCIE EI 2022年第6期5413-5425,共13页
In this paper,we propose a BPR-CNN(Biometric Pattern Recognition-Convolution Neural Network)classifier for hand motion classification as well as a dynamic threshold algorithm for motion signal detection and extraction... In this paper,we propose a BPR-CNN(Biometric Pattern Recognition-Convolution Neural Network)classifier for hand motion classification as well as a dynamic threshold algorithm for motion signal detection and extraction by EF(Electric Field)sensors.Currently,an EF sensor or EPS(Electric Potential Sensor)system is attracting attention as a next-generationmotion sensing technology due to low computation and price,high sensitivity and recognition speed compared to other sensor systems.However,it remains as a challenging problem to accurately detect and locate the authentic motion signal frame automatically in real-time when sensing body-motions such as hand motion,due to the variance of the electric-charge state by heterogeneous surroundings and operational conditions.This hinders the further utilization of the EF sensing;thus,it is critical to design the robust and credible methodology for detecting and extracting signals derived from the motion movement in order to make use and apply the EF sensor technology to electric consumer products such as mobile devices.In this study,we propose a motion detection algorithm using a dynamic offset-threshold method to overcome uncertainty in the initial electrostatic charge state of the sensor affected by a user and the surrounding environment of the subject.This method is designed to detect hand motions and extract its genuine motion signal frame successfully with high accuracy.After setting motion frames,we normalize the signals and then apply them to our proposed BPR-CNN motion classifier to recognize their motion types.Conducted experiment and analysis show that our proposed dynamic threshold method combined with a BPR-CNN classifier can detect the hand motions and extract the actual frames effectively with 97.1%accuracy,99.25%detection rate,98.4%motion frame matching rate and 97.7%detection&extraction success rate. 展开更多
关键词 BPR-CNN dynamic offset-threshold method electric potential sensor electric field sensor multiple convolution neural network motion classification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部