期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Performances of Seven Datasets in Presenting the Upper Ocean Heat Content in the South China Sea 被引量:2
1
作者 陈晓 严幼芳 +1 位作者 程旭华 齐义泉 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第5期1331-1342,共12页
In this study, the upper ocean heat content (OHC) variations in the South China Sea (SCS) during 1993- 2006 were investigated by examining ocean temperatures in seven datasets, including World Ocean Atlas 2009 (W... In this study, the upper ocean heat content (OHC) variations in the South China Sea (SCS) during 1993- 2006 were investigated by examining ocean temperatures in seven datasets, including World Ocean Atlas 2009 (WOA09) (climatology), Ishii datasets, Ocean General Circulation ModeI for the Earth Simulator (OFES), Simple Ocean Data Assimilation system (SODA), Global Ocean Data Assimilation System (GODAS), China Oceanic ReAnalysis system (CORA) , and an ocean reanalysis dataset for the joining area of Asia and Indian-Pacific Ocean (AIPO1.0). Among these datasets, two were independent of any numerical model, four relied on data assimilation, and one was generated without any data assimilation. The annual cycles revealed by the seven datasets were similar, but the interannual variations were different. Vertical structures of temperatures along the 18~N, 12.75~N, and 120~E sections were compared with data collected during open cruises in 1998 and 2005-08. The results indicated that Ishii, OFES, CORA, and AIPO1.0 were more consistent with the observations. Through systematic shortcomings and advantages in presenting the upper comparisons, we found that each dataset had its own OHC in the SCS. 展开更多
关键词 South China Sea ocean heat content multiple datasets interannual variability
下载PDF
A penalized integrative deep neural network for variable selection among multiple omics datasets
2
作者 Yang Li Xiaonan Ren +2 位作者 Haochen Yu Tao Sun Shuangge Ma 《Quantitative Biology》 CAS CSCD 2024年第3期313-323,共11页
Deep learning has been increasingly popular in omics data analysis.Recent works incorporating variable selection into deep learning have greatly enhanced the model’s interpretability.However,because deep learning des... Deep learning has been increasingly popular in omics data analysis.Recent works incorporating variable selection into deep learning have greatly enhanced the model’s interpretability.However,because deep learning desires a large sample size,the existing methods may result in uncertain findings when the dataset has a small sample size,commonly seen in omics data analysis.With the explosion and availability of omics data from multiple populations/studies,the existing methods naively pool them into one dataset to enhance the sample size while ignoring that variable structures can differ across datasets,which might lead to inaccurate variable selection results.We propose a penalized integrative deep neural network(PIN)to simultaneously select important variables from multiple datasets.PIN directly aggregates multiple datasets as input and considers both homogeneity and heterogeneity situations among multiple datasets in an integrative analysis framework.Results from extensive simulation studies and applications of PIN to gene expression datasets from elders with different cognitive statuses or ovarian cancer patients at different stages demonstrate that PIN outperforms existing methods with considerably improved performance among multiple datasets.The source code is freely available on Github(rucliyang/PINFunc).We speculate that the proposed PIN method will promote the identification of disease-related important variables based on multiple studies/datasets from diverse origins. 展开更多
关键词 deep learning integrative analysis multiple omics datasets variable selection
原文传递
High Spatial Resolution and High Temporal Frequency(30-m/15-day) Fractional Vegetation Cover Estimation over China Using Multiple Remote Sensing Datasets:Method Development and Validation 被引量:4
3
作者 Xihan MU Tian ZHAO +8 位作者 Gaiyan RUAN Jinling SONG Jindi WANG Guangjian YAN Tim RMCVICAR Kai YAN Zhan GAO Yaokai LIU Yuanyuan WANG 《Journal of Meteorological Research》 SCIE CSCD 2021年第1期128-147,共20页
High spatial resolution and high temporal frequency fractional vegetation cover(FVC) products have been increasingly in demand to monitor and research land surface processes. This paper develops an algorithm to estima... High spatial resolution and high temporal frequency fractional vegetation cover(FVC) products have been increasingly in demand to monitor and research land surface processes. This paper develops an algorithm to estimate FVC at a 30-m/15-day resolution over China by taking advantage of the spatial and temporal information from different types of sensors: the 30-m resolution sensor on the Chinese environment satellite(HJ-1) and the 1-km Moderate Resolution Imaging Spectroradiometer(MODIS). The algorithm was implemented for each main vegetation class and each land cover type over China. First, the high spatial resolution and high temporal frequency normalized difference vegetation index(NDVI) was acquired by using the continuous correction(CC) data assimilation method. Then, FVC was generated with a nonlinear pixel unmixing model. Model coefficients were obtained by statistical analysis of the MODIS NDVI. The proposed method was evaluated based on in situ FVC measurements and a global FVC product(GEOV1 FVC). Direct validation using in situ measurements at 97 sampling plots per half month in 2010 showed that the annual mean errors(MEs) of forest, cropland, and grassland were-0.025, 0.133, and 0.160, respectively, indicating that the FVCs derived from the proposed algorithm were consistent with ground measurements [R2 = 0.809,root-mean-square deviation(RMSD) = 0.065]. An intercomparison between the proposed FVC and GEOV1 FVC demonstrated that the two products had good spatial–temporal consistency and similar magnitude(RMSD approximates 0.1). Overall, the approach provides a new operational way to estimate high spatial resolution and high temporal frequency FVC from multiple remote sensing datasets. 展开更多
关键词 fractional vegetation cover(FVC) high spatial resolution and high temporal frequency data fusion normalized difference vegetation index(NDVI) pixel unmixing model multiple remote sensing datasets
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部