For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang For ...For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang-bang evasive maneuver with a random switching time.Combined Fast multiple model adaptive estimation(Fast MMAE)algorithm,the cooperative guidance law takes detection configuration affecting the accuracy of interception into consideration.Introduced the detection error model related to the line-of-sight(LOS)separation angle of two interceptors,an optimal cooperative guidance law solving the optimization problem is designed to modulate the LOS separation angle to reduce the estimation error and improve the interception performance.Due to the uncertainty of the target bang-bang maneuver switching time and the effective fitting of its multi-modal motion,Fast MMAE is introduced to identify its maneuver switching time and estimate the acceleration of the target to track and intercept the target accurately.The designed cooperative optimal guidance law with Fast MMAE has better estimation ability and interception performance than the traditional guidance law and estimation method via Monte Carlo simulation.展开更多
In the past,only one performance parameter was considered in the reliability estimation of micro-electro-mechanical system (MEMS) accelerometers,resulting in a one-sided reliability evaluation. Aiming at the failure c...In the past,only one performance parameter was considered in the reliability estimation of micro-electro-mechanical system (MEMS) accelerometers,resulting in a one-sided reliability evaluation. Aiming at the failure condition of large range MEMS accelerometers in high temperature environment,the corresponding accelerated degradation test is designed. According to the degradation condition of zero bias and scale factor,multiple dependent reliability estimation of large range MEMS accelerometers is carried out. The results show that the multiple dependent reliability estimation of the large range MEMS accelerometers can improve the accuracy of the estimation and get more accurate results.展开更多
In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applicati...In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applications, especially in passive radar systems. In this paper, we propose a joint DOA and polarization estimation method for unequal power sources based on the reconstructed noise subspace. The invariance property of noise subspace(IPNS) to power of sources has been proved an effective method to estimate DOA of unequal power sources. We develop the IPNS method for joint DOA and polarization estimation based on a dual polarized array. Moreover, we propose an improved IPNS method based on the reconstructed noise subspace, which has higher resolution probability than the IPNS method. It is theoretically proved that the IPNS to power of sources is still valid when the eigenvalues of the noise subspace are changed artificially. Simulation results show that the resolution probability of the proposed method is enhanced compared with the methods based on the IPNS and the polarimetric multiple signal classification(MUSIC) method. Meanwhile, the proposed method has approximately the same estimation accuracy as the IPNS method for the weak source.展开更多
The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this metho...The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this method usually estimates L signal DOAs by finding roots that lie closest to the unit circle of a(2M-1)-order polynomial, where L 〈 M. A novel efficient root-MUSIC-based method for direction estimation is presented, in which the order of polynomial is efficiently reduced to 2L. Compared with the unitary root-MUSIC(U-root-MUSIC) approach which involves real-valued computations only in the subspace decomposition stage, both tasks of subspace decomposition and polynomial rooting are implemented with real-valued computations in the new technique,which hence shows a significant efficiency advantage over most state-of-the-art techniques. Numerical simulations are conducted to verify the correctness and efficiency of the new estimator.展开更多
This paper focuses on fixed-interval smoothing for stochastic hybrid systems.When the truth-mode mismatch is encountered,existing smoothing methods based on fixed structure of model-set have significant performance de...This paper focuses on fixed-interval smoothing for stochastic hybrid systems.When the truth-mode mismatch is encountered,existing smoothing methods based on fixed structure of model-set have significant performance degradation and are inapplicable.We develop a fixedinterval smoothing method based on forward-and backward-filtering in the Variable Structure Multiple Model(VSMM)framework in this paper.We propose to use the Simplified Equivalent model Interacting Multiple Model(SEIMM)in the forward and the backward filters to handle the difficulty of different mode-sets used in both filters,and design a re-filtering procedure in the model-switching stage to enhance the estimation performance.To improve the computational efficiency,we make the basic model-set adaptive by the Likely-Model Set(LMS)algorithm.It turns out that the smoothing performance is further improved by the LMS due to less competition among models.Simulation results are provided to demonstrate the better performance and the computational efficiency of our proposed smoothing algorithms.展开更多
Objective:A computational model of insulin secretion and glucose metabolism for assisting the diagnosis of diabetes mellitus in clinical research is introduced.The proposed method for the estimation of parameters for...Objective:A computational model of insulin secretion and glucose metabolism for assisting the diagnosis of diabetes mellitus in clinical research is introduced.The proposed method for the estimation of parameters for a system of ordinary differential equations(ODEs)that represent the time course of plasma glucose and insulin concentrations during glucose tolerance test(GTT)in physiological studies is presented.The aim of this study was to explore how to interpret those laboratory glucose and insulin data as well as enhance the Ackerman mathematical model.Methods:Parameters estimation for a system of ODEs was performed by minimizing the sum of squared residuals(SSR)function,which quantifies the difference between theoretical model predictions and GTT's experimental observations.Our proposed perturbation search and multiple-shooting methods were applied during the estimating process.Results:Based on the Ackerman's published data,we estimated the key parameters by applying R-based iterative computer programs.As a result,the theoretically simulated curves perfectly matched the experimental data points.Our model showed that the estimated parameters,computed frequency and period values,were proven a good indicator of diabetes.Conclusion:The present paper introduces a computational algorithm to biomedical problems,particularly to endocrinology and metabolism fields,which involves two coupled differential equations with four parameters describing the glucose-insulin regulatory system that Ackerman proposed earlier.The enhanced approach may provide clinicians in endocrinology and metabolism field insight into the transition nature of human metabolic mechanism from normal to impaired glucose tolerance.展开更多
Several typical algorithms for tracking maneuvering target with phased array radar are studied in this paper. The constant gain filter with multiple models is analyzed. A typical method for adaptively controlling the ...Several typical algorithms for tracking maneuvering target with phased array radar are studied in this paper. The constant gain filter with multiple models is analyzed. A typical method for adaptively controlling the sampling interval is modified. The performance of the single model and multiple model estimator with uniform and variable sampling interval are evaluated and compared. It is shown by the simulation results that it is necessary to apply the adaptive sampling policy based on the multiple model method when the maneuvering targets are tracked by the phased array radar since saving radar resources is more important. The adaptive algorithms of variable sampling interval are better than the algorithms of variable model. The adaptive policy to determine the sampling interval based on multiple model are superior than those based on the single model filter, because IMM estimator can adapt to the maneuver more quickly and the prediction covariance of IMM is the more sensitive and more reliable index than residual to determine the sampling interval. With IMM based method, lower sampling interval is required for a certain accuracy.展开更多
In this paper, the effect of imperfect channel state information at the receiver, which is caused by noise and other interference, on the multi-access channel capacity is analysed through a statistical-mechanical appr...In this paper, the effect of imperfect channel state information at the receiver, which is caused by noise and other interference, on the multi-access channel capacity is analysed through a statistical-mechanical approach. Replica analyses focus on analytically studying how the minimum mean square error (MMSE) channel estimation error appears in a multiuser channel capacity formula. And the relevant mathematical expressions are derived. At the same time, numerical simulation results are demonstrated to validate the Replica analyses. The simulation results show how the system parameters, such as channel estimation error, system load and signal-to-noise ratio, affect the channel capacity.展开更多
This paper considers practical, high-order methods for the iterative location of the roots of nonlinear equations, one at a time. Special attention is being paid to algorithms also applicable to multiple roots of init...This paper considers practical, high-order methods for the iterative location of the roots of nonlinear equations, one at a time. Special attention is being paid to algorithms also applicable to multiple roots of initially known and unknown multiplicity. Efficient methods are presented in this note for the evaluation of the multiplicity index of the root being sought. Also reviewed here are super-linear and super-cubic methods that converge contrarily or alternatingly, enabling us, not only to approach the root briskly and confidently but also to actually bound and bracket it as we progress.展开更多
Recurrent events data and gap times between recurrent events are frequently encountered in many clinical and observational studies,and often more than one type of recurrent events is of interest.In this paper,we consi...Recurrent events data and gap times between recurrent events are frequently encountered in many clinical and observational studies,and often more than one type of recurrent events is of interest.In this paper,we consider a proportional hazards model for multiple type recurrent gap times data to assess the effect of covaxiates on the censored event processes of interest.An estimating equation approach is used to obtain the estimators of regression coefficients and baseline cumulative hazard functions.We examine asymptotic properties of the proposed estimators.Finite sample properties of these estimators are demonstrated by simulations.展开更多
Estimation of state-of-charge and state-of-health for batteries is one of the most important feature for modern battery management system(BMS).Robust or adaptive methods are the most investigated because a more intell...Estimation of state-of-charge and state-of-health for batteries is one of the most important feature for modern battery management system(BMS).Robust or adaptive methods are the most investigated because a more intelligent BMS could lead to sensible cost reduction of the entire battery system.We propose a new robust method,called ERMES(extendible range multi-model estimator),for determining an estimated state-of-charge(SoC),an estimated state-of-health(SoH)and a prediction of uncertainty of the estimates(state-of-uncertainty—SoU),thanks to which it is possible to monitor the validity of the estimates and adjust it,extending the robustness against a wider range of uncertainty,if necessary.Specifically,a finite number of models in state-space form are considered starting from a modified Thevenin battery model.Each model is characterized by a hypothesis of SoH value.An iterated extended Kalman filter(EKF)is then applied to each model in parallel,estimating for each one the SoC state variable.Residual errors are then considered to fuse both the estimated SoC and SoH from the bank of EKF,yielding the overall SoC and SoH estimates,respectively.In addition,a figure of uncertainty of such estimates is also provided.展开更多
A method to separate a harmonic signal from multiplicative and additive noises is proposed. The method is to square the signal x(t), which consists of a harmonic signal embedded in multiplicative and additive noises, ...A method to separate a harmonic signal from multiplicative and additive noises is proposed. The method is to square the signal x(t), which consists of a harmonic signal embedded in multiplicative and additive noises, to form another signal y(t) = x2(t)-E[x2(t)]. After y(t) having been gotten, the Fourier transform is imposed on it. Because the information of x(t) (especially about frequency) is included in y(t), the frequency of x(t) can be estimated from the power spectrum of y(t). According to the simulation, under the condition where frequencies divided by resolution dω are integer, the maximum relative error of estimated frequencies is less than 0.4% when the signal-to-noise ratio (SNR) is greater than -23 dB. If frequencies divided by resolution dω are not integer, the maximum relative error will be less than 2.9%. But it is still small in terms of engineering.展开更多
Purpose-The purpose of this paper is to present the research into fault detection and isolation(FDI)and evaluation of the reduction of performance after failures occurred in the flight control system(FCS)during its mi...Purpose-The purpose of this paper is to present the research into fault detection and isolation(FDI)and evaluation of the reduction of performance after failures occurred in the flight control system(FCS)during its mission operation.Design/methodology/approach–The FDI is accomplished via using the multiple models scheme which is developed based on the Extend Kalman Filter(EKF)algorithm.Towards this objective,the healthy mode of the FCS under different type of failures,including the control surfaces and structural,should be considered.It developed a bank of extended multiple models adaptive estimation(EMMAE)to detect and isolate the above mentioned failures in the FCS.In addition,the performances including the flight envelope,the voyage and endurance in cruising are proposed to reference and evaluate the process of mission,especially for UAV under failure conditions.Findings-The contribution of this paper is to provide the information not only about the failures,but also considering whether the UAV can accomplish the task for the ground station.Originality/value-The main contribution of this paper is in the areas of the structural and control surface faults researching,which are occurred in the mission procedures and emphasized the identification of those failures’magnitudes.The FDI scheme includes the performance evaluation,while the evaluation obtained through the extensive numerical simulations and saved in the offline database.As a consequence,it is more accurate and less computationally demanding while evaluating the performance.展开更多
基金This work was supported by the National Natural Science Foundation(NNSF)of China under grant no.61673386,62073335the China Postdoctoral Science Foundation(2017M613201,2019T120944).
文摘For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang-bang evasive maneuver with a random switching time.Combined Fast multiple model adaptive estimation(Fast MMAE)algorithm,the cooperative guidance law takes detection configuration affecting the accuracy of interception into consideration.Introduced the detection error model related to the line-of-sight(LOS)separation angle of two interceptors,an optimal cooperative guidance law solving the optimization problem is designed to modulate the LOS separation angle to reduce the estimation error and improve the interception performance.Due to the uncertainty of the target bang-bang maneuver switching time and the effective fitting of its multi-modal motion,Fast MMAE is introduced to identify its maneuver switching time and estimate the acceleration of the target to track and intercept the target accurately.The designed cooperative optimal guidance law with Fast MMAE has better estimation ability and interception performance than the traditional guidance law and estimation method via Monte Carlo simulation.
文摘In the past,only one performance parameter was considered in the reliability estimation of micro-electro-mechanical system (MEMS) accelerometers,resulting in a one-sided reliability evaluation. Aiming at the failure condition of large range MEMS accelerometers in high temperature environment,the corresponding accelerated degradation test is designed. According to the degradation condition of zero bias and scale factor,multiple dependent reliability estimation of large range MEMS accelerometers is carried out. The results show that the multiple dependent reliability estimation of the large range MEMS accelerometers can improve the accuracy of the estimation and get more accurate results.
基金supported by the National Natural Science Foundation of China(61501142)the China Postdoctoral Science Foundation(2015M571414)+3 种基金the Fundamental Research Funds for the Central Universities(HIT.NSRIF.2016102)Shandong Provincial Natural Science Foundation(ZR2014FQ003)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(HIT.NSRIF 2013130HIT(WH)XBQD 201022)
文摘In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applications, especially in passive radar systems. In this paper, we propose a joint DOA and polarization estimation method for unequal power sources based on the reconstructed noise subspace. The invariance property of noise subspace(IPNS) to power of sources has been proved an effective method to estimate DOA of unequal power sources. We develop the IPNS method for joint DOA and polarization estimation based on a dual polarized array. Moreover, we propose an improved IPNS method based on the reconstructed noise subspace, which has higher resolution probability than the IPNS method. It is theoretically proved that the IPNS to power of sources is still valid when the eigenvalues of the noise subspace are changed artificially. Simulation results show that the resolution probability of the proposed method is enhanced compared with the methods based on the IPNS and the polarimetric multiple signal classification(MUSIC) method. Meanwhile, the proposed method has approximately the same estimation accuracy as the IPNS method for the weak source.
基金supported by the National Natural Science Foundation of China(61501142)the Shandong Provincial Natural Science Foundation(ZR2014FQ003)+1 种基金the Special Foundation of China Postdoctoral Science(2016T90289)the China Postdoctoral Science Foundation(2015M571414)
文摘The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this method usually estimates L signal DOAs by finding roots that lie closest to the unit circle of a(2M-1)-order polynomial, where L 〈 M. A novel efficient root-MUSIC-based method for direction estimation is presented, in which the order of polynomial is efficiently reduced to 2L. Compared with the unitary root-MUSIC(U-root-MUSIC) approach which involves real-valued computations only in the subspace decomposition stage, both tasks of subspace decomposition and polynomial rooting are implemented with real-valued computations in the new technique,which hence shows a significant efficiency advantage over most state-of-the-art techniques. Numerical simulations are conducted to verify the correctness and efficiency of the new estimator.
基金supported in part by the National Natural Science Foundation of China(No.61773306)the National Key Research and Development Plan,China(Nos.2021YFC2202600 and 2021YFC2202603)。
文摘This paper focuses on fixed-interval smoothing for stochastic hybrid systems.When the truth-mode mismatch is encountered,existing smoothing methods based on fixed structure of model-set have significant performance degradation and are inapplicable.We develop a fixedinterval smoothing method based on forward-and backward-filtering in the Variable Structure Multiple Model(VSMM)framework in this paper.We propose to use the Simplified Equivalent model Interacting Multiple Model(SEIMM)in the forward and the backward filters to handle the difficulty of different mode-sets used in both filters,and design a re-filtering procedure in the model-switching stage to enhance the estimation performance.To improve the computational efficiency,we make the basic model-set adaptive by the Likely-Model Set(LMS)algorithm.It turns out that the smoothing performance is further improved by the LMS due to less competition among models.Simulation results are provided to demonstrate the better performance and the computational efficiency of our proposed smoothing algorithms.
基金supported by a grant from the NIH(No.U42 RR16607)
文摘Objective:A computational model of insulin secretion and glucose metabolism for assisting the diagnosis of diabetes mellitus in clinical research is introduced.The proposed method for the estimation of parameters for a system of ordinary differential equations(ODEs)that represent the time course of plasma glucose and insulin concentrations during glucose tolerance test(GTT)in physiological studies is presented.The aim of this study was to explore how to interpret those laboratory glucose and insulin data as well as enhance the Ackerman mathematical model.Methods:Parameters estimation for a system of ODEs was performed by minimizing the sum of squared residuals(SSR)function,which quantifies the difference between theoretical model predictions and GTT's experimental observations.Our proposed perturbation search and multiple-shooting methods were applied during the estimating process.Results:Based on the Ackerman's published data,we estimated the key parameters by applying R-based iterative computer programs.As a result,the theoretically simulated curves perfectly matched the experimental data points.Our model showed that the estimated parameters,computed frequency and period values,were proven a good indicator of diabetes.Conclusion:The present paper introduces a computational algorithm to biomedical problems,particularly to endocrinology and metabolism fields,which involves two coupled differential equations with four parameters describing the glucose-insulin regulatory system that Ackerman proposed earlier.The enhanced approach may provide clinicians in endocrinology and metabolism field insight into the transition nature of human metabolic mechanism from normal to impaired glucose tolerance.
文摘Several typical algorithms for tracking maneuvering target with phased array radar are studied in this paper. The constant gain filter with multiple models is analyzed. A typical method for adaptively controlling the sampling interval is modified. The performance of the single model and multiple model estimator with uniform and variable sampling interval are evaluated and compared. It is shown by the simulation results that it is necessary to apply the adaptive sampling policy based on the multiple model method when the maneuvering targets are tracked by the phased array radar since saving radar resources is more important. The adaptive algorithms of variable sampling interval are better than the algorithms of variable model. The adaptive policy to determine the sampling interval based on multiple model are superior than those based on the single model filter, because IMM estimator can adapt to the maneuver more quickly and the prediction covariance of IMM is the more sensitive and more reliable index than residual to determine the sampling interval. With IMM based method, lower sampling interval is required for a certain accuracy.
基金Project supported by the National Nature Science Foundation of China (Grant Nos 60773085 and 60801051)
文摘In this paper, the effect of imperfect channel state information at the receiver, which is caused by noise and other interference, on the multi-access channel capacity is analysed through a statistical-mechanical approach. Replica analyses focus on analytically studying how the minimum mean square error (MMSE) channel estimation error appears in a multiuser channel capacity formula. And the relevant mathematical expressions are derived. At the same time, numerical simulation results are demonstrated to validate the Replica analyses. The simulation results show how the system parameters, such as channel estimation error, system load and signal-to-noise ratio, affect the channel capacity.
文摘This paper considers practical, high-order methods for the iterative location of the roots of nonlinear equations, one at a time. Special attention is being paid to algorithms also applicable to multiple roots of initially known and unknown multiplicity. Efficient methods are presented in this note for the evaluation of the multiplicity index of the root being sought. Also reviewed here are super-linear and super-cubic methods that converge contrarily or alternatingly, enabling us, not only to approach the root briskly and confidently but also to actually bound and bracket it as we progress.
基金supported in part by Natural Science Foundation of Hubei(08BA164)Major Research Program of Hubei Provincial Department of Education(09B2001)+2 种基金supported in part by National Natural Science Foundation of China(1117112)Doctoral Fund of Ministry of Education of China(20090076110001)National Statistical Science Research Major Program of China(2011LZ051)
文摘Recurrent events data and gap times between recurrent events are frequently encountered in many clinical and observational studies,and often more than one type of recurrent events is of interest.In this paper,we consider a proportional hazards model for multiple type recurrent gap times data to assess the effect of covaxiates on the censored event processes of interest.An estimating equation approach is used to obtain the estimators of regression coefficients and baseline cumulative hazard functions.We examine asymptotic properties of the proposed estimators.Finite sample properties of these estimators are demonstrated by simulations.
文摘Estimation of state-of-charge and state-of-health for batteries is one of the most important feature for modern battery management system(BMS).Robust or adaptive methods are the most investigated because a more intelligent BMS could lead to sensible cost reduction of the entire battery system.We propose a new robust method,called ERMES(extendible range multi-model estimator),for determining an estimated state-of-charge(SoC),an estimated state-of-health(SoH)and a prediction of uncertainty of the estimates(state-of-uncertainty—SoU),thanks to which it is possible to monitor the validity of the estimates and adjust it,extending the robustness against a wider range of uncertainty,if necessary.Specifically,a finite number of models in state-space form are considered starting from a modified Thevenin battery model.Each model is characterized by a hypothesis of SoH value.An iterated extended Kalman filter(EKF)is then applied to each model in parallel,estimating for each one the SoC state variable.Residual errors are then considered to fuse both the estimated SoC and SoH from the bank of EKF,yielding the overall SoC and SoH estimates,respectively.In addition,a figure of uncertainty of such estimates is also provided.
基金the National Natural Foundation of China(No.59635140).
文摘A method to separate a harmonic signal from multiplicative and additive noises is proposed. The method is to square the signal x(t), which consists of a harmonic signal embedded in multiplicative and additive noises, to form another signal y(t) = x2(t)-E[x2(t)]. After y(t) having been gotten, the Fourier transform is imposed on it. Because the information of x(t) (especially about frequency) is included in y(t), the frequency of x(t) can be estimated from the power spectrum of y(t). According to the simulation, under the condition where frequencies divided by resolution dω are integer, the maximum relative error of estimated frequencies is less than 0.4% when the signal-to-noise ratio (SNR) is greater than -23 dB. If frequencies divided by resolution dω are not integer, the maximum relative error will be less than 2.9%. But it is still small in terms of engineering.
基金This research is supported by the Aeronautical Science Foundation of China,under Grant Number 20100753009.
文摘Purpose-The purpose of this paper is to present the research into fault detection and isolation(FDI)and evaluation of the reduction of performance after failures occurred in the flight control system(FCS)during its mission operation.Design/methodology/approach–The FDI is accomplished via using the multiple models scheme which is developed based on the Extend Kalman Filter(EKF)algorithm.Towards this objective,the healthy mode of the FCS under different type of failures,including the control surfaces and structural,should be considered.It developed a bank of extended multiple models adaptive estimation(EMMAE)to detect and isolate the above mentioned failures in the FCS.In addition,the performances including the flight envelope,the voyage and endurance in cruising are proposed to reference and evaluate the process of mission,especially for UAV under failure conditions.Findings-The contribution of this paper is to provide the information not only about the failures,but also considering whether the UAV can accomplish the task for the ground station.Originality/value-The main contribution of this paper is in the areas of the structural and control surface faults researching,which are occurred in the mission procedures and emphasized the identification of those failures’magnitudes.The FDI scheme includes the performance evaluation,while the evaluation obtained through the extensive numerical simulations and saved in the offline database.As a consequence,it is more accurate and less computationally demanding while evaluating the performance.