Tannin foam is a new functional material.It can be widely applied to the automobile industry,construction industry,and packaging industry due to its wide range of raw materials,renewable,easily degraded,low cost and a...Tannin foam is a new functional material.It can be widely applied to the automobile industry,construction industry,and packaging industry due to its wide range of raw materials,renewable,easily degraded,low cost and almost no pollution.Preparing tannin foam is a very complex process that includes high temperature,two phases,mechanical agitation,and phase change.To investigate the influence of the stirring velocity and paddle shape,simulation was calculated by making use of the volume of fluid(VOF)method and multiple reference frame(MRF)method in a three-dimensional flow field of tannin-based foaming precursor resin.The gas holdup and velocity magnitude were analysed with various conditions of mechanical velocities and paddle shape in the stirring flow field.The result shows the higher the velocity,the greater the disturbance and paddle shape between the eggbeater and the Rushton turbine,obviously the paddle shape of the eggbeater with a wider range of agitation,which can entrap more air into the tannin-based foaming precursor resin in a short time.Especially when the speed is 1500 rpm,the flow field of the Rushton turbine comes out of a ditch,which decreases the efficiency of mass transfer;there is less air to mix into the tannin-based foaming precursor resin,which causes unevenness.At the same time,the eggbeater shows the marvelous capability of hybrid as it has two vortexes and multiple cycles that make a difference from the Rushton turbine,which has only one vortex and two upper and lower loops;the structure makes the flow field more stable allowed evenness of flow field tannin-based foaming precursor resin.The results reveal that it is beneficial for tannin-based foaming precursor resin to use an eggbeater with a speed of 1500 rpm to reduce the consumption of resources while obtaining a uniform flow field.展开更多
Based on Fluent software,the gas−liquid two-phase flow in the horizontal stirred tank was simulated with SST k−ωturbulence model,Eulerian−Eulerian two-fluid model,and multi-reference flame method.The mixing process i...Based on Fluent software,the gas−liquid two-phase flow in the horizontal stirred tank was simulated with SST k−ωturbulence model,Eulerian−Eulerian two-fluid model,and multi-reference flame method.The mixing process in the tank was calculated by tracer method.The results show that increasing the rotating speed or gas flow is conducive to a more uniform distribution of the gas phase and accelerates the mixing of the liquid phase.When the rotating speed exceeds 93 r/min,the relative power demand remains basically constant.The change in the inclination angle of the upper impeller has minimal effect on the gas phase distribution.When the inclination angle is 50°,the relative power demand reaches the maximum.An appropriate increase in the impeller distance from the bottom improves the gas holdup and gas phase distribution but increases the liquid phase mixing time.展开更多
Three approaches based on computational fluid dynamics(CFD) techniques have been assessed for their ability to describe the engineering flow environment in a miniaturized mechanically agitated bioreactor. The three a...Three approaches based on computational fluid dynamics(CFD) techniques have been assessed for their ability to describe the engineering flow environment in a miniaturized mechanically agitated bioreactor. The three approaches tested were the source-sink(SS), the multiple reference frames(MRF) and the sliding grids(SG). In all the cases, the predictions of the velocity components agree with reported experimental data. However, the analysis of the results of the turbulent intensities predicted by the three approaches indicates the MRF and the SG techniques under predicted turbulent intensities are comparable to both experimental measurements and the SS method. The predicted power number and pumping number based on the SS approach are closer to typical reported experimental values compared to those obtained from the MRF and SG methods.展开更多
Open Ground Storey(OGS) framed buildings where the ground storey is kept open without infill walls, mainly to facilitate parking, is increasing commonly in urban areas. However, vulnerability of this type of buildin...Open Ground Storey(OGS) framed buildings where the ground storey is kept open without infill walls, mainly to facilitate parking, is increasing commonly in urban areas. However, vulnerability of this type of buildings has been exposed in past earthquakes. OGS buildings are conventionally designed by a bare frame analysis that ignores the stiffness of the infill walls present in the upper storeys, but doing so underestimates the inter-storey drift(ISD) and thereby the force demand in the ground storey columns. Therefore, a multiplication factor(MF) is introduced in various international codes to estimate the design forces(bending moments and shear forces) in the ground storey columns. This study focuses on the seismic performance of typical OGS buildings designed by means of MFs. The probabilistic seismic demand models, fragility curves, reliability and cost indices for various frame models including bare frames and fully infilled frames are developed. It is found that the MF scheme suggested by the Israel code is better than other international codes in terms of reliability and cost.展开更多
Insufficient fresh air supply due to the increased air tightness of building envelopes after building renovations and window upgrades is a major concern of HVAC engineering today.The paper demonstrates the application...Insufficient fresh air supply due to the increased air tightness of building envelopes after building renovations and window upgrades is a major concern of HVAC engineering today.The paper demonstrates the application of CFD simulations in the development of a compact decentralised ventilation unit with integrated heat recovery system for local ventilation of rooms,targeting this common issue.The device houses an innovative cyclically rotating recuperative heat exchanger,allowing effective condensate removal and de-icing in winter for its independent operation throughout the year.The paper introduces the ventilation unit,describes preparation of its numerical models,and conducts CFD simulation using Ansys Fluent software.The initial design of the device was improved following the findings of the numerical analysis,and the proposed adjustments were tested through follow-up CFD simulations,confirming that the desired outcomes were achieved.A separate CFD analysis was performed to assess the use of different air supply elements at the air outlet to the room,recommending the use of adjustable nozzles.A prototype ventilation unit was manufactured and the volume flow rate under different operating conditions was measured to be compared with the simulation results.The outcome of the research is a new type of compact local ventilation unit.An increase in device energy efficiency was achieved,with the aid of simulations,while maintaining its compact size.In addition to presenting the potential of using variant CFD analysis in the development of new HVAC equipment,the paper also indicates the drawbacks of using the Multiple Reference Frame(MRF)method to approximate the rotation of radial fan impellers in CFD simulations.展开更多
This present paper describes three dimensional computational analysis of complex internal flow in a cross flow fan. A commercial computational fluid dynamics (CFD) software code CFX was used for the computation. RNG k...This present paper describes three dimensional computational analysis of complex internal flow in a cross flow fan. A commercial computational fluid dynamics (CFD) software code CFX was used for the computation. RNG k-ε two equation turbulence model was used to simulate the model with unstructured mesh. Sliding mesh interface was used at the interface between the rotating and stationary domains to capture the unsteady interactions. An accurate assessment of the present investigation is made by comparing various parameters with the available experimental data. Three impeller geometries with different blade angles and radius ratio are used in the present study. Maximum energy transfer through the impeller takes place in the region where the flow follows the blade curvature. Radial velocity is not uniform through blade channels. Some blades work in turbine mode at very low flow coefficients. Static pressure is always negative in and around the impeller region.展开更多
基金supported by the Key Program of Applied and Basic Research in Yunnan Province(Grant No.202101AS070008)the National Natural Science Foundation of China(NSFC 31760187)+4 种基金supported by the 111 Project(D21027)the Yunnan Provincial Academician Workstation(YSZJGZZ-2020052)the Foreign Expert Workstation(202305AF150006)supported by the Scientific Research Foundation of Education Department of Yunnan Province(Grant Nos.2023J0696,2023Y0699)Foreign Talent Introduction Program of Science and Technology Department of Yunnan Province(Grant No.202305AO350002).
文摘Tannin foam is a new functional material.It can be widely applied to the automobile industry,construction industry,and packaging industry due to its wide range of raw materials,renewable,easily degraded,low cost and almost no pollution.Preparing tannin foam is a very complex process that includes high temperature,two phases,mechanical agitation,and phase change.To investigate the influence of the stirring velocity and paddle shape,simulation was calculated by making use of the volume of fluid(VOF)method and multiple reference frame(MRF)method in a three-dimensional flow field of tannin-based foaming precursor resin.The gas holdup and velocity magnitude were analysed with various conditions of mechanical velocities and paddle shape in the stirring flow field.The result shows the higher the velocity,the greater the disturbance and paddle shape between the eggbeater and the Rushton turbine,obviously the paddle shape of the eggbeater with a wider range of agitation,which can entrap more air into the tannin-based foaming precursor resin in a short time.Especially when the speed is 1500 rpm,the flow field of the Rushton turbine comes out of a ditch,which decreases the efficiency of mass transfer;there is less air to mix into the tannin-based foaming precursor resin,which causes unevenness.At the same time,the eggbeater shows the marvelous capability of hybrid as it has two vortexes and multiple cycles that make a difference from the Rushton turbine,which has only one vortex and two upper and lower loops;the structure makes the flow field more stable allowed evenness of flow field tannin-based foaming precursor resin.The results reveal that it is beneficial for tannin-based foaming precursor resin to use an eggbeater with a speed of 1500 rpm to reduce the consumption of resources while obtaining a uniform flow field.
基金financially supported by the Fundamental Research Funds for the Central Universities of Central South University,China(No.2020zzts515)。
文摘Based on Fluent software,the gas−liquid two-phase flow in the horizontal stirred tank was simulated with SST k−ωturbulence model,Eulerian−Eulerian two-fluid model,and multi-reference flame method.The mixing process in the tank was calculated by tracer method.The results show that increasing the rotating speed or gas flow is conducive to a more uniform distribution of the gas phase and accelerates the mixing of the liquid phase.When the rotating speed exceeds 93 r/min,the relative power demand remains basically constant.The change in the inclination angle of the upper impeller has minimal effect on the gas phase distribution.When the inclination angle is 50°,the relative power demand reaches the maximum.An appropriate increase in the impeller distance from the bottom improves the gas holdup and gas phase distribution but increases the liquid phase mixing time.
基金Supported by the U CL ORS Award and KC Wong Scholarshi
文摘Three approaches based on computational fluid dynamics(CFD) techniques have been assessed for their ability to describe the engineering flow environment in a miniaturized mechanically agitated bioreactor. The three approaches tested were the source-sink(SS), the multiple reference frames(MRF) and the sliding grids(SG). In all the cases, the predictions of the velocity components agree with reported experimental data. However, the analysis of the results of the turbulent intensities predicted by the three approaches indicates the MRF and the SG techniques under predicted turbulent intensities are comparable to both experimental measurements and the SS method. The predicted power number and pumping number based on the SS approach are closer to typical reported experimental values compared to those obtained from the MRF and SG methods.
文摘Open Ground Storey(OGS) framed buildings where the ground storey is kept open without infill walls, mainly to facilitate parking, is increasing commonly in urban areas. However, vulnerability of this type of buildings has been exposed in past earthquakes. OGS buildings are conventionally designed by a bare frame analysis that ignores the stiffness of the infill walls present in the upper storeys, but doing so underestimates the inter-storey drift(ISD) and thereby the force demand in the ground storey columns. Therefore, a multiplication factor(MF) is introduced in various international codes to estimate the design forces(bending moments and shear forces) in the ground storey columns. This study focuses on the seismic performance of typical OGS buildings designed by means of MFs. The probabilistic seismic demand models, fragility curves, reliability and cost indices for various frame models including bare frames and fully infilled frames are developed. It is found that the MF scheme suggested by the Israel code is better than other international codes in terms of reliability and cost.
文摘Insufficient fresh air supply due to the increased air tightness of building envelopes after building renovations and window upgrades is a major concern of HVAC engineering today.The paper demonstrates the application of CFD simulations in the development of a compact decentralised ventilation unit with integrated heat recovery system for local ventilation of rooms,targeting this common issue.The device houses an innovative cyclically rotating recuperative heat exchanger,allowing effective condensate removal and de-icing in winter for its independent operation throughout the year.The paper introduces the ventilation unit,describes preparation of its numerical models,and conducts CFD simulation using Ansys Fluent software.The initial design of the device was improved following the findings of the numerical analysis,and the proposed adjustments were tested through follow-up CFD simulations,confirming that the desired outcomes were achieved.A separate CFD analysis was performed to assess the use of different air supply elements at the air outlet to the room,recommending the use of adjustable nozzles.A prototype ventilation unit was manufactured and the volume flow rate under different operating conditions was measured to be compared with the simulation results.The outcome of the research is a new type of compact local ventilation unit.An increase in device energy efficiency was achieved,with the aid of simulations,while maintaining its compact size.In addition to presenting the potential of using variant CFD analysis in the development of new HVAC equipment,the paper also indicates the drawbacks of using the Multiple Reference Frame(MRF)method to approximate the rotation of radial fan impellers in CFD simulations.
文摘This present paper describes three dimensional computational analysis of complex internal flow in a cross flow fan. A commercial computational fluid dynamics (CFD) software code CFX was used for the computation. RNG k-ε two equation turbulence model was used to simulate the model with unstructured mesh. Sliding mesh interface was used at the interface between the rotating and stationary domains to capture the unsteady interactions. An accurate assessment of the present investigation is made by comparing various parameters with the available experimental data. Three impeller geometries with different blade angles and radius ratio are used in the present study. Maximum energy transfer through the impeller takes place in the region where the flow follows the blade curvature. Radial velocity is not uniform through blade channels. Some blades work in turbine mode at very low flow coefficients. Static pressure is always negative in and around the impeller region.