期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Exploring the Abnormal Brain Regions and Abnormal Functional Connections in SZ by Multiple Hypothesis Testing Technique
1
作者 Lan Yang Shun Qi +1 位作者 Chen Qiao Yanmei Kang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第10期215-237,共23页
Schizophrenia(SZ)is one of the most common mental diseases.Its main characteristics are abnormal social behavior and inability to correctly understand real things.In recent years,the magnetic resonance imaging(MRI)tec... Schizophrenia(SZ)is one of the most common mental diseases.Its main characteristics are abnormal social behavior and inability to correctly understand real things.In recent years,the magnetic resonance imaging(MRI)technique has been popularly utilized to study SZ.However,it is still a great challenge to reveal the essential information contained in the MRI data.In this paper,we proposed a biomarker selection approach based on the multiple hypothesis testing techniques to explore the difference between SZ and healthy controls by using both functional and structural MRI data,in which biomarkers represent both abnormal brain functional connectivity and abnormal brain regions.By implementing the biomarker selection approach,six abnormal brain regions and twenty-three abnormal functional connectivity in the brains of SZ are explored.It is discovered that compared with healthy controls,the significantly reduced gray matter volumes are mainly distributed in the limbic lobe and the basal ganglia,and the significantly increased gray matter volumes are distributed in the frontal gyrus.Meanwhile,it is revealed that the significantly strengthened connections are those between the middle frontal gyrus and the superior occipital gyrus,the superior occipital gyrus and the middle occipital gyrus as well as the middle occipital gyrus and the fusiform gyrus,and the rest connections are significantly weakened. 展开更多
关键词 multiple hypothesis testing SCHIZOPHRENIA magnetic resonance imaging abnormal brain regions abnormal functional connectivity
下载PDF
Multiple hypothesis tracking based on the Shiryayev sequential probability ratio test 被引量:2
2
作者 Jinbin FU Jinping SUN +1 位作者 Songtao LU Yingjing ZHANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第12期86-96,共11页
To date, Wald sequential probability ratio test(WSPRT) has been widely applied to track management of multiple hypothesis tracking(MHT). But in a real situation, if the false alarm spatial density is much larger than ... To date, Wald sequential probability ratio test(WSPRT) has been widely applied to track management of multiple hypothesis tracking(MHT). But in a real situation, if the false alarm spatial density is much larger than the new target spatial density, the original track score will be very close to the deletion threshold of the WSPRT. Consequently, all tracks, including target tracks, may easily be deleted, which means that the tracking performance is sensitive to the tracking environment. Meanwhile, if a target exists for a long time, its track will have a high score, which will make the track survive for a long time even after the target has disappeared. In this paper, to consider the relationship between the hypotheses of the test, we adopt the Shiryayev SPRT(SSPRT) for track management in MHT. By introducing a hypothesis transition probability, the original track score can increase faster, which solves the first problem. In addition, by setting an independent SSPRT for track deletion, the track score can decrease faster, which solves the second problem. The simulation results show that the proposed SSPRT-based MHT can achieve better tracking performance than MHT based on the WSPRT under a high false alarm spatial density. 展开更多
关键词 multiple target tracking multiple hypothesis tracking Shiryayev sequential probability ratio test track management track score
原文传递
Matched Filter Based Spectrum Sensing When Primary User Has Multiple Power Levels 被引量:12
3
作者 ZHANG Xinzhi GAO Feifei +1 位作者 CHAI Rong JIANG Tao 《China Communications》 SCIE CSCD 2015年第2期21-31,共11页
In this paper,we investigate the matched filter based spectrum sensing in a more reasonable cognitive radio(CR) scenario when the primary user(PU) has more than one transmit power levels,as regulated in most standards... In this paper,we investigate the matched filter based spectrum sensing in a more reasonable cognitive radio(CR) scenario when the primary user(PU) has more than one transmit power levels,as regulated in most standards,i.e.,IEEE 802.11 Series,GSM,LTE,LTE-A,etc.This new multiple primary transmit power(MPTP) scenario is specialized by two different targets:detecting the presence of PU and identifying the power level.Compared to the traditional binary sensing where only the presence of PU is checked,SU may attain more information about the primary network(making CR more "intelligent") and design the subsequent optimization strategy.The key technology is the multiple hypothesis testing as opposed to the traditional binary hypothesis testing.We discuss two situations under whether the channel phase is known or not,and we derive the closed form solutions for decision regions and several performance metrics,from which some interesting phenomenons are observed and the related discussions are presented.Numerical examples are provided to corroborate the proposed studies. 展开更多
关键词 spectrum sensing power recognition matched filter multiple primary transmit power multiple hypothesis testing power mask
下载PDF
IMM/MHT FUSING FEATURE INFORMATION IN VISUAL TRACKING
4
作者 Li Shuangquan Sun Shuyan Jiang Sheng Huang Zhipei Wu Jiankang 《Journal of Electronics(China)》 2009年第6期765-770,共6页
In multi-target tracking,Multiple Hypothesis Tracking (MHT) can effectively solve the data association problem. However,traditional MHT can not make full use of motion information. In this work,we combine MHT with Int... In multi-target tracking,Multiple Hypothesis Tracking (MHT) can effectively solve the data association problem. However,traditional MHT can not make full use of motion information. In this work,we combine MHT with Interactive Multiple Model (IMM) estimator and feature fusion. New algorithm greatly improves the tracking performance due to the fact that IMM estimator provides better estimation and feature information enhances the accuracy of data association. The new algorithm is tested by tracking tropical fish in fish container. Experimental result shows that this algorithm can significantly reduce tracking lost rate and restrain the noises with higher computational effectiveness when compares with traditional MHT. 展开更多
关键词 multiple hypothesis Tracking (MHT) Interacting multiple Model (IMM) Feature information fusion Data association
下载PDF
A novel RHT-TBD approach for weak targets in HPRF radar 被引量:6
5
作者 Hongbo YU Guohong WANG +1 位作者 Wei WU Shuncheng TAN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第12期59-72,共14页
A novel approach, which can handle ambiguous data from weak targets, is proposed within the randomized Hough transform track-before-detect(RHT-TBD) framework. The main idea is that, without the pre-detection and ambig... A novel approach, which can handle ambiguous data from weak targets, is proposed within the randomized Hough transform track-before-detect(RHT-TBD) framework. The main idea is that, without the pre-detection and ambiguity resolution step at each time step, the ambiguous measurements are mapped by the multiple hypothesis ranging(MHR) procedure. In this way, all the information, based on the relativity in time and pulse repetition frequency(PRF) domains, can be gathered among different PRFs and integrated over time via a batch procedure. The final step is to perform the RHT with all the extended measurements, and the ambiguous data is unfolded while the detection decision is confirmed at the end of the processing chain.Unlike classic methods, the new approach resolves the problem of range ambiguity and detects the true track for targets. Finally, its application is illustrated to analyze and compare the performance between the proposed approach and the existing approach. Simulation results exhibit the effectiveness of this approach. 展开更多
关键词 high pulse repetition frequency weak targets TRACK-BEFORE-DETECT randomized Hough transform multiple hypothesis ranging range ambiguity resolution
原文传递
Group tracking algorithm for split maneuvering based on complex domain topological descriptions 被引量:1
6
作者 Cong WANG Chen GUO +1 位作者 Yu LIU You HE 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第1期126-136,共11页
A group tracking algorithm for split maneuvering based on complex domain topological descriptions is proposed for the tracking of members in a maneuvering group. According to the split characteristics of a group targe... A group tracking algorithm for split maneuvering based on complex domain topological descriptions is proposed for the tracking of members in a maneuvering group. According to the split characteristics of a group target, split models of group targets are established based on a sliding window feedback mechanism to determine the occurrence and classification of split maneuvering, which makes the tracked objects focus by group members effectively. The track of an outlier single target is reconstructed by the sequential least square method. At the same time, the relationship between the group members is expressed by the complex domain topological description method, which solves the problem of point-track association between the members. The Singer method is then used to update the tracks. Compared with classical multi-target tracking algorithms based on Multiple Hypothesis Tracking (MHT) and the Different Structure Joint Probabilistic Data Association (DS-JPDA) algorithm, the proposed algorithm has better tracking accuracy and stability, is robust against environmental clutter and has stable time-consumption under both classical radar conditions and partly resolvable conditions. 展开更多
关键词 Complex domain Group targets Joint probabitistic data association multiple hypothesis tracking Sliding window feedback Tracking
原文传递
Distributed Penalized Modal Regression for Massive Data
7
作者 JIN Jun LIU Shuangzhe MA Tiefeng 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2023年第2期798-821,共24页
Nowadays,researchers are frequently confronted with challenges from massive data computing by a number of limitations of computer primary memory.Modal regression(MR)is a good alternative of the mean regression and lik... Nowadays,researchers are frequently confronted with challenges from massive data computing by a number of limitations of computer primary memory.Modal regression(MR)is a good alternative of the mean regression and likelihood based methods,because of its robustness and high efficiency.To this end,the authors extend MR to massive data analysis and propose a computationally and statistically efficient divide and conquer MR method(DC-MR).The major novelty of this method consists of splitting one entire dataset into several blocks,implementing the MR method on data in each block,and deriving final results through combining these regression results via a weighted average,which provides approximate estimates of regression results on the entire dataset.The proposed method significantly reduces the required amount of primary memory,and the resulting estimator is theoretically as efficient as the traditional MR on the entire data set.The authors also investigate a multiple hypothesis testing variable selection approach to select significant parametric components and prove the approach possessing the oracle property.In addition,the authors propose a practical modified modal expectation-maximization(MEM)algorithm for the proposed procedures.Numerical studies on simulated and real datasets are conducted to assess and showcase the practical and effective performance of our proposed methods. 展开更多
关键词 Asymptotic distribution divide and conquer massive data modal regression multiple hypothesis testing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部