Multiple images steganography refers to hiding secret messages in multiple natural images to minimize the leakage of secret messages during transmission.Currently,the main multiple images steganography algorithms main...Multiple images steganography refers to hiding secret messages in multiple natural images to minimize the leakage of secret messages during transmission.Currently,the main multiple images steganography algorithms mainly distribute the payloads as sparsely as possible inmultiple cover images to improve the detection error rate of stego images.In order to enable the payloads to be accurately and efficiently distributed in each cover image,this paper proposes a multiple images steganography for JPEG images based on optimal payload redistribution.Firstly,the algorithm uses the principle of dynamic programming to redistribute the payloads of the cover images to reduce the time required in the process of payloads distribution.Then,by reducing the difference between the features of the cover images and the stego images to increase the detection error rate of the stego images.Secondly,this paper uses a data decomposition mechanism based on Vandermonde matrix.Even if part of the data is lost during the transmission of the secret messages,as long as the data loss rate is less than the data redundancy rate,the original secret messages can be recovered.Experimental results show that the method proposed in this paper improves the efficiency of payloads distribution compared with existing multiple images steganography.At the same time,the algorithm can achieve the optimal payload distribution of multiple images steganography to improve the anti-statistical detection performance of stego images.展开更多
The multiple images of modernity are used here to put forward and corroborate the possibility of the genesis of multiple modern civilizations and their very modernity while confirming the prior existence of modern Wes...The multiple images of modernity are used here to put forward and corroborate the possibility of the genesis of multiple modern civilizations and their very modernity while confirming the prior existence of modern Western civilization. In examining the complexity, inner tensions and contemporary predicaments appearing in the formation and evolution of earlier Western modernity, this paper reveals the basic mechanisms of modernity and the various possible approaches to it, that is, the fact that there are more possibilities for modernity other than the Western one. Economic globalization is the first step and the only pathway towards the modernity goals of human society, and any deglobalization or antiglobalization will hinder or check the progress of human society towards the ideal goal of modernity. History and the real-world economy demonstrate that “building a community with a shared future for mankind” is so far a more suitable and more explanatory guiding concept for seeking and approaching the human ideal of modernity;it surpasses existing concepts such as “ecumenicalism,” “cosmopolitanism,” and “globalism,” and is the latest understanding of the modernity of human society in contemporary China.展开更多
A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of...A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method.展开更多
The fast X-ray imaging beamline(BL16U2)at Shanghai Synchrotron Radiation Facility(SSRF)is a new beamline that provides X-ray micro-imaging capabilities across a wide range of time scales,spanning from 100 ps toμs and...The fast X-ray imaging beamline(BL16U2)at Shanghai Synchrotron Radiation Facility(SSRF)is a new beamline that provides X-ray micro-imaging capabilities across a wide range of time scales,spanning from 100 ps toμs and ms.This beamline has been specifically designed to facilitate the investigation of a wide range of rapid phenomena,such as the deformation and failure of materials subjected to intense dynamic loads.In addition,it enables the study of high-pressure and high-speed fuel spray processes in automotive engines.The light source of this beamline is a cryogenic permanent magnet undulator(CPMU)that is cooled by liquid nitrogen.This CPMU can generate X-ray photons within an energy range of 8.7-30 keV.The beamline offers two modes of operation:monochromatic beam mode with a liquid nitrogen-cooled double-crystal monochromator(DCM)and pink beam mode with the first crystal of the DCM out of the beam path.Four X-ray imaging methods were implemented in BL16U2:single-pulse ultrafast X-ray imaging,microsecond-resolved X-ray dynamic imaging,millisecond-resolved X-ray dynamic micro-CT,and high-resolution quantitative micro-CT.Furthermore,BL16U2 is equipped with various in situ impact loading systems,such as a split Hopkinson bar system,light gas gun,and fuel spray chamber.Following the completion of the final commissioning in 2021 and subsequent trial operations in 2022,the beamline has been officially available to users from 2023.展开更多
With the development of seismic exploration,passive-source seismic data has attracted increasing attention.Ambient noise passive seismic sources exists widely in nature and industrial production.Passive seismic data i...With the development of seismic exploration,passive-source seismic data has attracted increasing attention.Ambient noise passive seismic sources exists widely in nature and industrial production.Passive seismic data is important in logging while drilling(LWD),large-scale structural exploration,etc.In this paper,we proposed a passive multiple reverse time migration imaging(PMRTMI)method based on wavefield decomposition and normalized imaging conditions method.This method differs from seismic interferometry in that it can use raw passive seismic data directly in RTM imaging without reconstruction of virtual active gather,and we use the wavefield decomposition method to eliminate the low frequency noise in RTM.Further,the energy normalized imaging condition is used in full wavefield decomposition,which can not only enhance the image quality of both edge and deep information but also overcome the wrong energy problem caused by uneven distribution of passive sources;furthermore,this method exhibits high efficiency.Finally,numerical examples with the Marmousi model show the effectiveness of the method.展开更多
Surface-related multiples frequently propagate into the subsurface and contain abundant information on small reflection angles.Compared with the conventional migration of primaries,migration of multiples offers comple...Surface-related multiples frequently propagate into the subsurface and contain abundant information on small reflection angles.Compared with the conventional migration of primaries,migration of multiples offers complementary illumination and a higher vertical resolution.However,crosstalk artifacts caused by unrelated multiples during reverse time migration(RTM)using multiples severely degrade the reliability and interpretation of the final migration images.Therefore,we proposed RTM using first-order receiver-side water-bottom-related multiples for eliminating crosstalk artifacts and enhancing vertical resolution.We first backward propagate the first-order receiver-side water-bottom-related multiples using a water-layer model,followed by saving the upper boundary wavefield.Then we produce the source wavefield using a seismic wavelet and the receiver wavefield by back-extrapolating the saved boundary.Finally,the cross-correlation imaging condition is applied to generate the final image.This method transforms the receiver-side multiples into primaries,followed by the conventional migration processing procedures.Numerical examples using synthetic datasets demonstrate that our method significantly enhances the imaging quality by eliminating crosstalk artifacts and improving the resolution.展开更多
Super-resolution imaging is vital for optical applications, such as high capacity information transmission, real-time bio-molecular imaging, and nanolithography. In recent years, technologies and methods of super-reso...Super-resolution imaging is vital for optical applications, such as high capacity information transmission, real-time bio-molecular imaging, and nanolithography. In recent years, technologies and methods of super-resolution imaging have attracted much attention. Different kinds of novel lenses, from the superlens to the super-oscillatory lens, have been designed and fabricated to break through the diffraction limit. However, the effect of the super-resolution imaging in these lenses is not satisfactory due to intrinsic loss, aberration, large sidebands, and so on. Moreover, these lenses also cannot realize multiple super-resolution imaging. In this research, we introduce the solid immersion mechanism to Mikaelian lens(ML) for multiple super-resolution imaging. The effect is robust and valid for broadband frequencies. Based on conformal transformation optics as a bridge linking the solid immersion ML and generalized Maxwell's fish-eye lens(GMFEL), we also discovered the effect of multiple super-resolution imaging in the solid immersion GMFEL.展开更多
Multiple description coding has recently been proposed as a joint source and channel coding to solve the problem of robust image transmission over unreliable network, and it can offer a variety of tradeoff between sig...Multiple description coding has recently been proposed as a joint source and channel coding to solve the problem of robust image transmission over unreliable network, and it can offer a variety of tradeoff between signal redundancy and transmission robustness. In this letter, a novel pre- and post-processing method with flexible redundancy insertion for polyphase downsampling multiple de- scription coding is presented. The proposed method can be implemented as pre- and post-processing to all standards for image and video communications, with obvious advantages. Simulation results show that this approach can reduce the computational complexity while provide a flexible redundancy in- sertion to make the system robust for any packet loss situation over different networks.展开更多
Ultrashort pulse,multispectral non-linear optical microscopy(NLOM)is developed and used to image,simultaneously,a mixed population of cells expressing different fluorescent protein mutants in a 3D tissue model of angi...Ultrashort pulse,multispectral non-linear optical microscopy(NLOM)is developed and used to image,simultaneously,a mixed population of cells expressing different fluorescent protein mutants in a 3D tissue model of angiogenesis.Broadband,sub-10-fs pulses are used to excite multiple fluorescent proteins and generate second harmonic in collagen.A 16-channel multispectral detector is used to delineate the multiple non-linear optical signals,pixel by pixel,in NLOM.The ability to image multiple fluorescent protein mutants and collagen,enables serial measurements of cell-cell and cell-matrix interactions in our 3D tissue model and characterization of fundamental processes in angiogenic morphogenesis.展开更多
Image restoration is often solved by minimizing an energy function consisting of a data-fidelity term and a regularization term.A regularized convex term can usually preserve the image edges well in the restored image...Image restoration is often solved by minimizing an energy function consisting of a data-fidelity term and a regularization term.A regularized convex term can usually preserve the image edges well in the restored image.In this paper,we consider a class of convex and edge-preserving regularization functions,i.e.,multiplicative half-quadratic regularizations,and we use the Newton method to solve the correspondingly reduced systems of nonlinear equations.At each Newton iterate,the preconditioned conjugate gradient method,incorporated with a constraint preconditioner,is employed to solve the structured Newton equation that has a symmetric positive definite coefficient matrix. The eigenvalue bounds of the preconditioned matrix are deliberately derived,which can be used to estimate the convergence speed of the preconditioned conjugate gradient method.We use experimental results to demonstrate that this new approach is efficient, and the effect of image restoration is reasonably well.展开更多
Visual secret sharing has received more and more attention over the past years due to the fact that neither complex computation nor cryptographic knowledge is required to decrypt the secret image directly according to...Visual secret sharing has received more and more attention over the past years due to the fact that neither complex computation nor cryptographic knowledge is required to decrypt the secret image directly according to the characteristics of the human vision system. Considering the issue of sharing the secret image at multiple image resolutions with the meaningful shadows, in this paper, we present a friendly progressive visual secret sharing scheme without expanding the image size in the shadows and the reconstructed secret image based on applying a 2x2-sized block-wise operation to generate the shadows block by block. The proposed method can achieve these benefits: 1) the generated shadows are meaningful, and their sizes are not expanded, and 2) the secret image can be recovered at different resolutions by stacking different quantities of shadows together. The experimental results also show that the proposed method is superior to other compared schemes.展开更多
Transporting information is one of the important functions of photons and is also the essential duty of information science. Here, we realize multiple imaging by detecting photons with changeable wavelengths based on ...Transporting information is one of the important functions of photons and is also the essential duty of information science. Here, we realize multiple imaging by detecting photons with changeable wavelengths based on time-resolved correlation measurements. In our system, information from multiple objects can be transported. During this process, the wavelength of the photons illuminating the objects is different from the wavelength of the photons detected by the detectors. More importantly, the wavelength of the photons that are utilized to record images can also be changed to match the sensitive range of the used detectors. In our experiment, images of the objects are reconstructed clearly by detecting the photons at wavelengths of 650, 810, and 1064 nm, respectively. These properties should have potential applications in information science.展开更多
Multiple reference optical coherence tomography(MR-OCT) is a recently developed, low-cost and compact time-domain OCT solution for primary care and consumer level applications. A combination of a voice coil actuator...Multiple reference optical coherence tomography(MR-OCT) is a recently developed, low-cost and compact time-domain OCT solution for primary care and consumer level applications. A combination of a voice coil actuator and a partial mirror(PM) extends the scan range for imaging depths of approximately 1 mm in biological samples. Our previous research on MR-OCT is based only on intensity information obtained from the depth-resolved interference signal. In this Letter, we extract the phase information from the MR-OCT signal and, hence, provide an additional contrast modality. The phase sensitivity of the system is measured to be approximately 0.2 and 1.5 rad for the first and twelfth orders of reflection when using a mirror as the sample.This Letter describes first results of phase-sensitive data measured on a phantom obtained with MR-OCT. Data from a chick embryo chorioallantoic membrane(CAM) is used to demonstrate the feasibility of MR-OCT for in vivo phase-sensitive imaging.展开更多
We propose a novel method of slice image reconstruction with controllable spatial filtering by using the correlation of periodic delta-function arrays (PDFAs) with elemental images in computational integral imaging....We propose a novel method of slice image reconstruction with controllable spatial filtering by using the correlation of periodic delta-function arrays (PDFAs) with elemental images in computational integral imaging. The multiple PDFAs, whose spatial periods correspond to object's depths with the elemental image array (EIA), can generate a set of spatially filtered EIAs for multiple object depths compared with the conventional method for the depth of a single object. We analyze a controllable spatial filtering effect by the proposed method. To show the feasibility of the proposed method, we carry out preliminary experiments for multiple objects and present the results.展开更多
The incidence of multiple noncontiguous spinal injuries (MNSI) in the cervical spine is rare but has catastrophic consequences. The patient in this report was a 34-year-old woman with five-level cervical MNSI. CT an...The incidence of multiple noncontiguous spinal injuries (MNSI) in the cervical spine is rare but has catastrophic consequences. The patient in this report was a 34-year-old woman with five-level cervical MNSI. CT and MRI showed that injuries included atlantoaxial instability, burst fracture of C6, dislocation of C6/7, rupture of the intervertebal disc or ligamentous complex, and irreversible cord damage. The mechanism for this case was a combined pattern of hyperflexion, compression, and hyperextension injuries. A review of the literature revealed that this case is the first report in the literature of a vehicle related accident causing five-level noncontiguous injuries of the cervical spine.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.U1736214,U1804263,U1636219,61772281,61772549,and 61872448)the National Key R&D Program of China(Nos.2016YFB0801303,2016QY01W0105)the Science and Technology Innovation Talent Project of Henan Province(No.184200510018).
文摘Multiple images steganography refers to hiding secret messages in multiple natural images to minimize the leakage of secret messages during transmission.Currently,the main multiple images steganography algorithms mainly distribute the payloads as sparsely as possible inmultiple cover images to improve the detection error rate of stego images.In order to enable the payloads to be accurately and efficiently distributed in each cover image,this paper proposes a multiple images steganography for JPEG images based on optimal payload redistribution.Firstly,the algorithm uses the principle of dynamic programming to redistribute the payloads of the cover images to reduce the time required in the process of payloads distribution.Then,by reducing the difference between the features of the cover images and the stego images to increase the detection error rate of the stego images.Secondly,this paper uses a data decomposition mechanism based on Vandermonde matrix.Even if part of the data is lost during the transmission of the secret messages,as long as the data loss rate is less than the data redundancy rate,the original secret messages can be recovered.Experimental results show that the method proposed in this paper improves the efficiency of payloads distribution compared with existing multiple images steganography.At the same time,the algorithm can achieve the optimal payload distribution of multiple images steganography to improve the anti-statistical detection performance of stego images.
文摘The multiple images of modernity are used here to put forward and corroborate the possibility of the genesis of multiple modern civilizations and their very modernity while confirming the prior existence of modern Western civilization. In examining the complexity, inner tensions and contemporary predicaments appearing in the formation and evolution of earlier Western modernity, this paper reveals the basic mechanisms of modernity and the various possible approaches to it, that is, the fact that there are more possibilities for modernity other than the Western one. Economic globalization is the first step and the only pathway towards the modernity goals of human society, and any deglobalization or antiglobalization will hinder or check the progress of human society towards the ideal goal of modernity. History and the real-world economy demonstrate that “building a community with a shared future for mankind” is so far a more suitable and more explanatory guiding concept for seeking and approaching the human ideal of modernity;it surpasses existing concepts such as “ecumenicalism,” “cosmopolitanism,” and “globalism,” and is the latest understanding of the modernity of human society in contemporary China.
文摘A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method.
基金supported by the CAS Project for Young Scientists in Basic Research(YSBR-096)the National Major Scientific Instruments and Equipment Development Project of China(No.11627901)+1 种基金the National Key Research and Development Program of China(Nos.2021YFF0701202,2021YFA1600703)the National Natural Science Foundation of China(Nos.U1932205,12275343).
文摘The fast X-ray imaging beamline(BL16U2)at Shanghai Synchrotron Radiation Facility(SSRF)is a new beamline that provides X-ray micro-imaging capabilities across a wide range of time scales,spanning from 100 ps toμs and ms.This beamline has been specifically designed to facilitate the investigation of a wide range of rapid phenomena,such as the deformation and failure of materials subjected to intense dynamic loads.In addition,it enables the study of high-pressure and high-speed fuel spray processes in automotive engines.The light source of this beamline is a cryogenic permanent magnet undulator(CPMU)that is cooled by liquid nitrogen.This CPMU can generate X-ray photons within an energy range of 8.7-30 keV.The beamline offers two modes of operation:monochromatic beam mode with a liquid nitrogen-cooled double-crystal monochromator(DCM)and pink beam mode with the first crystal of the DCM out of the beam path.Four X-ray imaging methods were implemented in BL16U2:single-pulse ultrafast X-ray imaging,microsecond-resolved X-ray dynamic imaging,millisecond-resolved X-ray dynamic micro-CT,and high-resolution quantitative micro-CT.Furthermore,BL16U2 is equipped with various in situ impact loading systems,such as a split Hopkinson bar system,light gas gun,and fuel spray chamber.Following the completion of the final commissioning in 2021 and subsequent trial operations in 2022,the beamline has been officially available to users from 2023.
基金sponsored by the Natural Science Foundation of China(No.41874139)the Natural Science Foundation of China(No.41674124)Jilin Province Foundation for Excellent Youths(No.20190103139JH)
文摘With the development of seismic exploration,passive-source seismic data has attracted increasing attention.Ambient noise passive seismic sources exists widely in nature and industrial production.Passive seismic data is important in logging while drilling(LWD),large-scale structural exploration,etc.In this paper,we proposed a passive multiple reverse time migration imaging(PMRTMI)method based on wavefield decomposition and normalized imaging conditions method.This method differs from seismic interferometry in that it can use raw passive seismic data directly in RTM imaging without reconstruction of virtual active gather,and we use the wavefield decomposition method to eliminate the low frequency noise in RTM.Further,the energy normalized imaging condition is used in full wavefield decomposition,which can not only enhance the image quality of both edge and deep information but also overcome the wrong energy problem caused by uneven distribution of passive sources;furthermore,this method exhibits high efficiency.Finally,numerical examples with the Marmousi model show the effectiveness of the method.
基金partially funded by the National Natural Science Foundation of China(Grant No.41730425)the Special Fund of the Institute of Geophysics,China Earthquake Administration(Grant No.DQJB20K42)the Institute of Geology and Geophysics,Chinese Academy of Sciences Project(Grant No.IGGCAS-2019031)。
文摘Surface-related multiples frequently propagate into the subsurface and contain abundant information on small reflection angles.Compared with the conventional migration of primaries,migration of multiples offers complementary illumination and a higher vertical resolution.However,crosstalk artifacts caused by unrelated multiples during reverse time migration(RTM)using multiples severely degrade the reliability and interpretation of the final migration images.Therefore,we proposed RTM using first-order receiver-side water-bottom-related multiples for eliminating crosstalk artifacts and enhancing vertical resolution.We first backward propagate the first-order receiver-side water-bottom-related multiples using a water-layer model,followed by saving the upper boundary wavefield.Then we produce the source wavefield using a seismic wavelet and the receiver wavefield by back-extrapolating the saved boundary.Finally,the cross-correlation imaging condition is applied to generate the final image.This method transforms the receiver-side multiples into primaries,followed by the conventional migration processing procedures.Numerical examples using synthetic datasets demonstrate that our method significantly enhances the imaging quality by eliminating crosstalk artifacts and improving the resolution.
基金Project supported by the National Natural Science Foundation of China (Grant No. 92050102)the National Key Research and Development Program of China (Grant No. 2020YFA0710100)the Fundamental Research Funds for Central Universities, China (Grant Nos. 20720200074, 20720220134, 202006310051, and 20720220033)。
文摘Super-resolution imaging is vital for optical applications, such as high capacity information transmission, real-time bio-molecular imaging, and nanolithography. In recent years, technologies and methods of super-resolution imaging have attracted much attention. Different kinds of novel lenses, from the superlens to the super-oscillatory lens, have been designed and fabricated to break through the diffraction limit. However, the effect of the super-resolution imaging in these lenses is not satisfactory due to intrinsic loss, aberration, large sidebands, and so on. Moreover, these lenses also cannot realize multiple super-resolution imaging. In this research, we introduce the solid immersion mechanism to Mikaelian lens(ML) for multiple super-resolution imaging. The effect is robust and valid for broadband frequencies. Based on conformal transformation optics as a bridge linking the solid immersion ML and generalized Maxwell's fish-eye lens(GMFEL), we also discovered the effect of multiple super-resolution imaging in the solid immersion GMFEL.
基金Funded by the National Natural Science Foundation of China (No.60671037)Ningbo Industry Foundation (No.2007B10051)+2 种基金Zhejiang Province Key Industry Foundation (No.2006C11200)Scientific Research Fund of Zhejiang Provincial Education Department (No.20070956, No.20070978, No.20061661)Ningbo University Foundation (XK0610031)
文摘Multiple description coding has recently been proposed as a joint source and channel coding to solve the problem of robust image transmission over unreliable network, and it can offer a variety of tradeoff between signal redundancy and transmission robustness. In this letter, a novel pre- and post-processing method with flexible redundancy insertion for polyphase downsampling multiple de- scription coding is presented. The proposed method can be implemented as pre- and post-processing to all standards for image and video communications, with obvious advantages. Simulation results show that this approach can reduce the computational complexity while provide a flexible redundancy in- sertion to make the system robust for any packet loss situation over different networks.
基金funded by American Heart Association SDG(#0530020N)to KJB,National Institutes of Health(EB008366)and NSF Early Career Faculty Development Award(CAREER)to ATY.
文摘Ultrashort pulse,multispectral non-linear optical microscopy(NLOM)is developed and used to image,simultaneously,a mixed population of cells expressing different fluorescent protein mutants in a 3D tissue model of angiogenesis.Broadband,sub-10-fs pulses are used to excite multiple fluorescent proteins and generate second harmonic in collagen.A 16-channel multispectral detector is used to delineate the multiple non-linear optical signals,pixel by pixel,in NLOM.The ability to image multiple fluorescent protein mutants and collagen,enables serial measurements of cell-cell and cell-matrix interactions in our 3D tissue model and characterization of fundamental processes in angiogenic morphogenesis.
基金supported by the National Basic Research Program (No.2005CB321702)the National Outstanding Young Scientist Foundation(No. 10525102)the Specialized Research Grant for High Educational Doctoral Program(Nos. 20090211120011 and LZULL200909),Hong Kong RGC grants and HKBU FRGs
文摘Image restoration is often solved by minimizing an energy function consisting of a data-fidelity term and a regularization term.A regularized convex term can usually preserve the image edges well in the restored image.In this paper,we consider a class of convex and edge-preserving regularization functions,i.e.,multiplicative half-quadratic regularizations,and we use the Newton method to solve the correspondingly reduced systems of nonlinear equations.At each Newton iterate,the preconditioned conjugate gradient method,incorporated with a constraint preconditioner,is employed to solve the structured Newton equation that has a symmetric positive definite coefficient matrix. The eigenvalue bounds of the preconditioned matrix are deliberately derived,which can be used to estimate the convergence speed of the preconditioned conjugate gradient method.We use experimental results to demonstrate that this new approach is efficient, and the effect of image restoration is reasonably well.
文摘Visual secret sharing has received more and more attention over the past years due to the fact that neither complex computation nor cryptographic knowledge is required to decrypt the secret image directly according to the characteristics of the human vision system. Considering the issue of sharing the secret image at multiple image resolutions with the meaningful shadows, in this paper, we present a friendly progressive visual secret sharing scheme without expanding the image size in the shadows and the reconstructed secret image based on applying a 2x2-sized block-wise operation to generate the shadows block by block. The proposed method can achieve these benefits: 1) the generated shadows are meaningful, and their sizes are not expanded, and 2) the secret image can be recovered at different resolutions by stacking different quantities of shadows together. The experimental results also show that the proposed method is superior to other compared schemes.
基金supported by the National Natural Science Foundation of China(Nos.11534006,11674184,and11374166)the Natural Science Foundation of Tianjin(Nos.16JCZDJC31300 and 13JCZDJC33800)+1 种基金the 111 Project(No.B07013)the Collaborative Innovation Center of Extreme Optics
文摘Transporting information is one of the important functions of photons and is also the essential duty of information science. Here, we realize multiple imaging by detecting photons with changeable wavelengths based on time-resolved correlation measurements. In our system, information from multiple objects can be transported. During this process, the wavelength of the photons illuminating the objects is different from the wavelength of the photons detected by the detectors. More importantly, the wavelength of the photons that are utilized to record images can also be changed to match the sensitive range of the used detectors. In our experiment, images of the objects are reconstructed clearly by detecting the photons at wavelengths of 650, 810, and 1064 nm, respectively. These properties should have potential applications in information science.
基金supported by the Galway University Foundationthe University of Limerick Foundationthe National Biophotonics Imaging Platform(NBIP)Ireland,funded under the Higher Education Authority PRTLI Cycle 4,co-funded by the Irish Government and the European Union Investing in your future,and Compact Imaging,Inc
文摘Multiple reference optical coherence tomography(MR-OCT) is a recently developed, low-cost and compact time-domain OCT solution for primary care and consumer level applications. A combination of a voice coil actuator and a partial mirror(PM) extends the scan range for imaging depths of approximately 1 mm in biological samples. Our previous research on MR-OCT is based only on intensity information obtained from the depth-resolved interference signal. In this Letter, we extract the phase information from the MR-OCT signal and, hence, provide an additional contrast modality. The phase sensitivity of the system is measured to be approximately 0.2 and 1.5 rad for the first and twelfth orders of reflection when using a mirror as the sample.This Letter describes first results of phase-sensitive data measured on a phantom obtained with MR-OCT. Data from a chick embryo chorioallantoic membrane(CAM) is used to demonstrate the feasibility of MR-OCT for in vivo phase-sensitive imaging.
基金supported by the information technology(IT)research and development program of MKE/KEIT(10041682Development of High-Definition 3D Image Processing Technologies Using Advanced Integral Imaging with Improved Depth Range)
文摘We propose a novel method of slice image reconstruction with controllable spatial filtering by using the correlation of periodic delta-function arrays (PDFAs) with elemental images in computational integral imaging. The multiple PDFAs, whose spatial periods correspond to object's depths with the elemental image array (EIA), can generate a set of spatially filtered EIAs for multiple object depths compared with the conventional method for the depth of a single object. We analyze a controllable spatial filtering effect by the proposed method. To show the feasibility of the proposed method, we carry out preliminary experiments for multiple objects and present the results.
文摘The incidence of multiple noncontiguous spinal injuries (MNSI) in the cervical spine is rare but has catastrophic consequences. The patient in this report was a 34-year-old woman with five-level cervical MNSI. CT and MRI showed that injuries included atlantoaxial instability, burst fracture of C6, dislocation of C6/7, rupture of the intervertebal disc or ligamentous complex, and irreversible cord damage. The mechanism for this case was a combined pattern of hyperflexion, compression, and hyperextension injuries. A review of the literature revealed that this case is the first report in the literature of a vehicle related accident causing five-level noncontiguous injuries of the cervical spine.