This paper investigates the stability of time-delay systems via a multiple integral approach. Based on the refined Jensen-based inequality, a novel multiple integral inequality is proposed. Applying the multiple integ...This paper investigates the stability of time-delay systems via a multiple integral approach. Based on the refined Jensen-based inequality, a novel multiple integral inequality is proposed. Applying the multiple integral inequality to estimate the derivative of Lyapunov-Krasovskii functional(LKF) with multiple integral terms, a novel stability condition is formulated for the linear time-delay systems. Two numerical examples are employed to demonstrate the improvements of our results.展开更多
In this paper, by introducing the norm ||x|| (x ∈ Rn), a multiple Hardy- Hilbert's integral inequality with the best constant factor and it's equivalent form are given.
In this paper,by making use of Divergence theorem for multiple integrals,we establish some integral inequalities for Schur convex functions defined on bodies B⊂R^(n)that are symmetric,convex and have nonempty interior...In this paper,by making use of Divergence theorem for multiple integrals,we establish some integral inequalities for Schur convex functions defined on bodies B⊂R^(n)that are symmetric,convex and have nonempty interiors.Examples for three dimensional balls are also provided.展开更多
基金supported by the National Natural Science Foundation of China(61473070,61433004,61627809)SAPI Fundamental Research Funds(2013ZCX01,2013ZCX14)
文摘This paper investigates the stability of time-delay systems via a multiple integral approach. Based on the refined Jensen-based inequality, a novel multiple integral inequality is proposed. Applying the multiple integral inequality to estimate the derivative of Lyapunov-Krasovskii functional(LKF) with multiple integral terms, a novel stability condition is formulated for the linear time-delay systems. Two numerical examples are employed to demonstrate the improvements of our results.
文摘In this paper, by introducing the norm ||x|| (x ∈ Rn), a multiple Hardy- Hilbert's integral inequality with the best constant factor and it's equivalent form are given.
文摘In this paper,by making use of Divergence theorem for multiple integrals,we establish some integral inequalities for Schur convex functions defined on bodies B⊂R^(n)that are symmetric,convex and have nonempty interiors.Examples for three dimensional balls are also provided.