Let X={X(t)∈R^(d),t∈R^(N)}be a centered space-time anisotropic Gaussian field with indices H=(H_(1),…,H_(N))∈(0,1)~N,where the components X_(i)(i=1,…,d)of X are independent,and the canonical metric√(E(X_(i)(t)-X...Let X={X(t)∈R^(d),t∈R^(N)}be a centered space-time anisotropic Gaussian field with indices H=(H_(1),…,H_(N))∈(0,1)~N,where the components X_(i)(i=1,…,d)of X are independent,and the canonical metric√(E(X_(i)(t)-X_(i)(s))^(2))^(1/2)(i=1,…,d)is commensurate with■for s=(s_(1),…,s_(N)),t=(t_(1),…,t_(N))∈R~N,α_(i)∈(0,1],and with the continuous functionγ(·)satisfying certain conditions.First,the upper and lower bounds of the hitting probabilities of X can be derived from the corresponding generalized Hausdorff measure and capacity,which are based on the kernel functions depending explicitly onγ(·).Furthermore,the multiple intersections of the sample paths of two independent centered space-time anisotropic Gaussian fields with different distributions are considered.Our results extend the corresponding results for anisotropic Gaussian fields to a large class of space-time anisotropic Gaussian fields.展开更多
The line control for multiple intersections is a hot spot in the area of transportation. According to the principle of system analysis and coordination, a method about fuzzy line control for multiple intersections is ...The line control for multiple intersections is a hot spot in the area of transportation. According to the principle of system analysis and coordination, a method about fuzzy line control for multiple intersections is proposed. The system is made of two control units, one is the basic control unit for every single intersection, and the other is used for the function of coordination.展开更多
Let X^(H)={X^(H)(s),s∈R^(N_(1))}and X^(K)={X^(K)(t),t∈R^(N_(2))}be two independent time-space anisotropic random fields with indices H∈(0,1)^(N_(1)) and K∈(0,1)^(N_(2)),which may not possess Gaussianity,and which ...Let X^(H)={X^(H)(s),s∈R^(N_(1))}and X^(K)={X^(K)(t),t∈R^(N_(2))}be two independent time-space anisotropic random fields with indices H∈(0,1)^(N_(1)) and K∈(0,1)^(N_(2)),which may not possess Gaussianity,and which take values in R^(d) with a space metric τ.Under certain general conditions with density functions defined on a bounded interval,we study problems regarding the hitting probabilities of time-space anisotropic random fields and the existence of intersections of the sample paths of random fields X^(H) and X^(K).More generally,for any Borel set F⊂R^(d),the conditions required for F to contain intersection points of X^(H) and X^(K) are established.As an application,we give an example of an anisotropic non-Gaussian random field to show that these results are applicable to the solutions of non-linear systems of stochastic fractional heat equations.展开更多
基金supported by the National Natural Science Foundation of China(12371150,11971432)the Natural Science Foundation of Zhejiang Province(LY21G010003)+2 种基金the Management Project of"Digital+"Discipline Construction of Zhejiang Gongshang University(SZJ2022A012,SZJ2022B017)the Characteristic&Preponderant Discipline of Key Construction Universities in Zhejiang Province(Zhejiang Gongshang University-Statistics)the Scientific Research Projects of Universities in Anhui Province(2022AH050955)。
文摘Let X={X(t)∈R^(d),t∈R^(N)}be a centered space-time anisotropic Gaussian field with indices H=(H_(1),…,H_(N))∈(0,1)~N,where the components X_(i)(i=1,…,d)of X are independent,and the canonical metric√(E(X_(i)(t)-X_(i)(s))^(2))^(1/2)(i=1,…,d)is commensurate with■for s=(s_(1),…,s_(N)),t=(t_(1),…,t_(N))∈R~N,α_(i)∈(0,1],and with the continuous functionγ(·)satisfying certain conditions.First,the upper and lower bounds of the hitting probabilities of X can be derived from the corresponding generalized Hausdorff measure and capacity,which are based on the kernel functions depending explicitly onγ(·).Furthermore,the multiple intersections of the sample paths of two independent centered space-time anisotropic Gaussian fields with different distributions are considered.Our results extend the corresponding results for anisotropic Gaussian fields to a large class of space-time anisotropic Gaussian fields.
文摘The line control for multiple intersections is a hot spot in the area of transportation. According to the principle of system analysis and coordination, a method about fuzzy line control for multiple intersections is proposed. The system is made of two control units, one is the basic control unit for every single intersection, and the other is used for the function of coordination.
基金supported by National NaturalScience Foundation of China(11971432)Natural Science Foundation of Zhejiang Province(LY21G010003)+1 种基金First Class Discipline of Zhejiang-A(Zhejiang Gongshang University-Statistics)the Natural Science Foundation of Chuzhou University(zrjz2019012)。
文摘Let X^(H)={X^(H)(s),s∈R^(N_(1))}and X^(K)={X^(K)(t),t∈R^(N_(2))}be two independent time-space anisotropic random fields with indices H∈(0,1)^(N_(1)) and K∈(0,1)^(N_(2)),which may not possess Gaussianity,and which take values in R^(d) with a space metric τ.Under certain general conditions with density functions defined on a bounded interval,we study problems regarding the hitting probabilities of time-space anisotropic random fields and the existence of intersections of the sample paths of random fields X^(H) and X^(K).More generally,for any Borel set F⊂R^(d),the conditions required for F to contain intersection points of X^(H) and X^(K) are established.As an application,we give an example of an anisotropic non-Gaussian random field to show that these results are applicable to the solutions of non-linear systems of stochastic fractional heat equations.