老化、温度变化和局部阴影等引起的电池电气特性不同,使光伏阵列P-U曲线出现多个功率峰值点。大容量光伏阵列组件数多,其多峰值问题比小容量光伏阵列更常见和复杂。该文首先根据局部阴影条件下光伏阵列分段函数型输出特性,建立其S函数...老化、温度变化和局部阴影等引起的电池电气特性不同,使光伏阵列P-U曲线出现多个功率峰值点。大容量光伏阵列组件数多,其多峰值问题比小容量光伏阵列更常见和复杂。该文首先根据局部阴影条件下光伏阵列分段函数型输出特性,建立其S函数模型。然后提出免疫细菌觅食算法,实现大容量光伏阵列全局最大功率点跟踪(global maximum power point tracking,GMPPT),利用细菌觅食算法的随机选取方向特性和免疫选择算子,实现时变环境下全局最大功率点的动态跟踪,将所有跟踪到的全局最大功率点保存到全局最大功率点记忆池,再利用全局最大功率点记忆池初始化群体和产生迁移个体新位置,加快重复出现全局最大功率点的跟踪速度。仿真结果表明,免疫细菌觅食算法在动态和重复出现局部阴影条件下都有良好的GMPPT跟踪定位能力。展开更多
文摘老化、温度变化和局部阴影等引起的电池电气特性不同,使光伏阵列P-U曲线出现多个功率峰值点。大容量光伏阵列组件数多,其多峰值问题比小容量光伏阵列更常见和复杂。该文首先根据局部阴影条件下光伏阵列分段函数型输出特性,建立其S函数模型。然后提出免疫细菌觅食算法,实现大容量光伏阵列全局最大功率点跟踪(global maximum power point tracking,GMPPT),利用细菌觅食算法的随机选取方向特性和免疫选择算子,实现时变环境下全局最大功率点的动态跟踪,将所有跟踪到的全局最大功率点保存到全局最大功率点记忆池,再利用全局最大功率点记忆池初始化群体和产生迁移个体新位置,加快重复出现全局最大功率点的跟踪速度。仿真结果表明,免疫细菌觅食算法在动态和重复出现局部阴影条件下都有良好的GMPPT跟踪定位能力。